Flux outward Sphere-Cylinder

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












$D=x^2+y^2+z^2le 25,y^2+z^2le 9$



$F=y^2,x^2,z$



I need to calculate the flux outward the boundary of $D$.



I think I can use the divergent theorem, but How can I define the triple integral of the whole surface? Or Do I need to divide the surface into 3 parts ?







share|cite|improve this question























    up vote
    0
    down vote

    favorite












    $D=x^2+y^2+z^2le 25,y^2+z^2le 9$



    $F=y^2,x^2,z$



    I need to calculate the flux outward the boundary of $D$.



    I think I can use the divergent theorem, but How can I define the triple integral of the whole surface? Or Do I need to divide the surface into 3 parts ?







    share|cite|improve this question





















      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      $D=x^2+y^2+z^2le 25,y^2+z^2le 9$



      $F=y^2,x^2,z$



      I need to calculate the flux outward the boundary of $D$.



      I think I can use the divergent theorem, but How can I define the triple integral of the whole surface? Or Do I need to divide the surface into 3 parts ?







      share|cite|improve this question











      $D=x^2+y^2+z^2le 25,y^2+z^2le 9$



      $F=y^2,x^2,z$



      I need to calculate the flux outward the boundary of $D$.



      I think I can use the divergent theorem, but How can I define the triple integral of the whole surface? Or Do I need to divide the surface into 3 parts ?









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked 15 hours ago









      NPLS

      1819




      1819




















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          Use the Divergence Theorem. That is,
          $$
          beginalign*
          iint_E mathbfFcdot dmathbfS &= iiint_E textdiv (mathbfF) :dV \
          &= iiint_E langle partial_x, partial_y, partial_z rangle cdot langle y^2,x^2,z rangle : dV \
          &= iiint_E partial_x(y^2) + partial_y(x^2) + partial_z(z) : dV \
          &=iiint_E 1 :dV \
          &=iiint_E 1 :dx : dy : dz\
          &=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 left|fracpartial(x,y,z)partial(x,r,theta) right| dx : dr : dtheta \
          &=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 big|rbig| : dx : dr : dtheta \
          &=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 r : dx : dr : dtheta hspace4mm
          mbox since r geq 0 \
          &= 2pi int_0^3 r (2sqrt25-r^2) : dr \
          &= - 2pi int_25^16 sqrtu: du hspace4mm
          mbox where u = 25-r^2, hspace4mm
          mbox so hspace4mm
          du = -2r :dr
          \
          &= frac4pi3left( 5^3 - 4^3 right) \
          &= boxedfrac2443pi \
          endalign*
          $$
          since given a parametrization in cylindrical coordinates
          $$
          mathbfr(x,r,theta)
          = langle x(x,r,theta), y(x,r,theta), z(x,r,theta)rangle
          = langle x,r cos theta,r sin thetarangle, hspace4mm
          r geq 0
          hspace4mm
          mbox and
          hspace4mm
          0leq theta leq 2pi,
          $$
          its Jacobian is
          $$
          beginalign*
          fracpartial(x,y,z)partial(x,r,theta)
          &=
          det
          beginpmatrix
          fracpartial xpartial x& fracpartial xpartial r & fracpartial xpartial theta \
          fracpartial ypartial x& fracpartial ypartial r & fracpartial ypartial theta \
          fracpartial zpartial x & fracpartial zpartial r & fracpartial zpartial theta \
          endpmatrix \
          &=
          det
          beginpmatrix
          1 & 0& 0 \
          0 & cos theta & -r sin theta \
          0 &sin theta & r cos theta \
          endpmatrix \
          &= r.
          endalign*
          $$






          share|cite|improve this answer

















          • 1




            exactly! Thanks
            – NPLS
            14 hours ago

















          up vote
          1
          down vote













          You're going to want to convert to cylindrical coordinates, with $z$ being identified with the $x$-axis. (A diagram helps) The integral becomes $$int_0^2piint_0^3int_-sqrt25-r^2^sqrt25-r^2rcdot textdiv(F) dz dr dtheta$$
          Where $r$ is the Jacobian of the transformation $(r,theta,z)mapsto (z,rcos(theta),rsin(theta))$. The integral isn't so hard, so I'll leave it to "u" to finish :)






          share|cite|improve this answer

















          • 1




            shouldn't it be $dxdrdtheta$ ? becouse my cylinder is parallel to the x-axis
            – NPLS
            14 hours ago










          • @NPLS you can use $dx : dr : dtheta$ or $dz : dr : dtheta$, where we identify the variable $z$ to be the coordinate along the $x$-axis.
            – Mee Seong Im
            14 hours ago










          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2873038%2fflux-outward-sphere-cylinder%23new-answer', 'question_page');

          );

          Post as a guest






























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          1
          down vote



          accepted










          Use the Divergence Theorem. That is,
          $$
          beginalign*
          iint_E mathbfFcdot dmathbfS &= iiint_E textdiv (mathbfF) :dV \
          &= iiint_E langle partial_x, partial_y, partial_z rangle cdot langle y^2,x^2,z rangle : dV \
          &= iiint_E partial_x(y^2) + partial_y(x^2) + partial_z(z) : dV \
          &=iiint_E 1 :dV \
          &=iiint_E 1 :dx : dy : dz\
          &=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 left|fracpartial(x,y,z)partial(x,r,theta) right| dx : dr : dtheta \
          &=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 big|rbig| : dx : dr : dtheta \
          &=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 r : dx : dr : dtheta hspace4mm
          mbox since r geq 0 \
          &= 2pi int_0^3 r (2sqrt25-r^2) : dr \
          &= - 2pi int_25^16 sqrtu: du hspace4mm
          mbox where u = 25-r^2, hspace4mm
          mbox so hspace4mm
          du = -2r :dr
          \
          &= frac4pi3left( 5^3 - 4^3 right) \
          &= boxedfrac2443pi \
          endalign*
          $$
          since given a parametrization in cylindrical coordinates
          $$
          mathbfr(x,r,theta)
          = langle x(x,r,theta), y(x,r,theta), z(x,r,theta)rangle
          = langle x,r cos theta,r sin thetarangle, hspace4mm
          r geq 0
          hspace4mm
          mbox and
          hspace4mm
          0leq theta leq 2pi,
          $$
          its Jacobian is
          $$
          beginalign*
          fracpartial(x,y,z)partial(x,r,theta)
          &=
          det
          beginpmatrix
          fracpartial xpartial x& fracpartial xpartial r & fracpartial xpartial theta \
          fracpartial ypartial x& fracpartial ypartial r & fracpartial ypartial theta \
          fracpartial zpartial x & fracpartial zpartial r & fracpartial zpartial theta \
          endpmatrix \
          &=
          det
          beginpmatrix
          1 & 0& 0 \
          0 & cos theta & -r sin theta \
          0 &sin theta & r cos theta \
          endpmatrix \
          &= r.
          endalign*
          $$






          share|cite|improve this answer

















          • 1




            exactly! Thanks
            – NPLS
            14 hours ago














          up vote
          1
          down vote



          accepted










          Use the Divergence Theorem. That is,
          $$
          beginalign*
          iint_E mathbfFcdot dmathbfS &= iiint_E textdiv (mathbfF) :dV \
          &= iiint_E langle partial_x, partial_y, partial_z rangle cdot langle y^2,x^2,z rangle : dV \
          &= iiint_E partial_x(y^2) + partial_y(x^2) + partial_z(z) : dV \
          &=iiint_E 1 :dV \
          &=iiint_E 1 :dx : dy : dz\
          &=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 left|fracpartial(x,y,z)partial(x,r,theta) right| dx : dr : dtheta \
          &=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 big|rbig| : dx : dr : dtheta \
          &=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 r : dx : dr : dtheta hspace4mm
          mbox since r geq 0 \
          &= 2pi int_0^3 r (2sqrt25-r^2) : dr \
          &= - 2pi int_25^16 sqrtu: du hspace4mm
          mbox where u = 25-r^2, hspace4mm
          mbox so hspace4mm
          du = -2r :dr
          \
          &= frac4pi3left( 5^3 - 4^3 right) \
          &= boxedfrac2443pi \
          endalign*
          $$
          since given a parametrization in cylindrical coordinates
          $$
          mathbfr(x,r,theta)
          = langle x(x,r,theta), y(x,r,theta), z(x,r,theta)rangle
          = langle x,r cos theta,r sin thetarangle, hspace4mm
          r geq 0
          hspace4mm
          mbox and
          hspace4mm
          0leq theta leq 2pi,
          $$
          its Jacobian is
          $$
          beginalign*
          fracpartial(x,y,z)partial(x,r,theta)
          &=
          det
          beginpmatrix
          fracpartial xpartial x& fracpartial xpartial r & fracpartial xpartial theta \
          fracpartial ypartial x& fracpartial ypartial r & fracpartial ypartial theta \
          fracpartial zpartial x & fracpartial zpartial r & fracpartial zpartial theta \
          endpmatrix \
          &=
          det
          beginpmatrix
          1 & 0& 0 \
          0 & cos theta & -r sin theta \
          0 &sin theta & r cos theta \
          endpmatrix \
          &= r.
          endalign*
          $$






          share|cite|improve this answer

















          • 1




            exactly! Thanks
            – NPLS
            14 hours ago












          up vote
          1
          down vote



          accepted







          up vote
          1
          down vote



          accepted






          Use the Divergence Theorem. That is,
          $$
          beginalign*
          iint_E mathbfFcdot dmathbfS &= iiint_E textdiv (mathbfF) :dV \
          &= iiint_E langle partial_x, partial_y, partial_z rangle cdot langle y^2,x^2,z rangle : dV \
          &= iiint_E partial_x(y^2) + partial_y(x^2) + partial_z(z) : dV \
          &=iiint_E 1 :dV \
          &=iiint_E 1 :dx : dy : dz\
          &=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 left|fracpartial(x,y,z)partial(x,r,theta) right| dx : dr : dtheta \
          &=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 big|rbig| : dx : dr : dtheta \
          &=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 r : dx : dr : dtheta hspace4mm
          mbox since r geq 0 \
          &= 2pi int_0^3 r (2sqrt25-r^2) : dr \
          &= - 2pi int_25^16 sqrtu: du hspace4mm
          mbox where u = 25-r^2, hspace4mm
          mbox so hspace4mm
          du = -2r :dr
          \
          &= frac4pi3left( 5^3 - 4^3 right) \
          &= boxedfrac2443pi \
          endalign*
          $$
          since given a parametrization in cylindrical coordinates
          $$
          mathbfr(x,r,theta)
          = langle x(x,r,theta), y(x,r,theta), z(x,r,theta)rangle
          = langle x,r cos theta,r sin thetarangle, hspace4mm
          r geq 0
          hspace4mm
          mbox and
          hspace4mm
          0leq theta leq 2pi,
          $$
          its Jacobian is
          $$
          beginalign*
          fracpartial(x,y,z)partial(x,r,theta)
          &=
          det
          beginpmatrix
          fracpartial xpartial x& fracpartial xpartial r & fracpartial xpartial theta \
          fracpartial ypartial x& fracpartial ypartial r & fracpartial ypartial theta \
          fracpartial zpartial x & fracpartial zpartial r & fracpartial zpartial theta \
          endpmatrix \
          &=
          det
          beginpmatrix
          1 & 0& 0 \
          0 & cos theta & -r sin theta \
          0 &sin theta & r cos theta \
          endpmatrix \
          &= r.
          endalign*
          $$






          share|cite|improve this answer













          Use the Divergence Theorem. That is,
          $$
          beginalign*
          iint_E mathbfFcdot dmathbfS &= iiint_E textdiv (mathbfF) :dV \
          &= iiint_E langle partial_x, partial_y, partial_z rangle cdot langle y^2,x^2,z rangle : dV \
          &= iiint_E partial_x(y^2) + partial_y(x^2) + partial_z(z) : dV \
          &=iiint_E 1 :dV \
          &=iiint_E 1 :dx : dy : dz\
          &=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 left|fracpartial(x,y,z)partial(x,r,theta) right| dx : dr : dtheta \
          &=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 big|rbig| : dx : dr : dtheta \
          &=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 r : dx : dr : dtheta hspace4mm
          mbox since r geq 0 \
          &= 2pi int_0^3 r (2sqrt25-r^2) : dr \
          &= - 2pi int_25^16 sqrtu: du hspace4mm
          mbox where u = 25-r^2, hspace4mm
          mbox so hspace4mm
          du = -2r :dr
          \
          &= frac4pi3left( 5^3 - 4^3 right) \
          &= boxedfrac2443pi \
          endalign*
          $$
          since given a parametrization in cylindrical coordinates
          $$
          mathbfr(x,r,theta)
          = langle x(x,r,theta), y(x,r,theta), z(x,r,theta)rangle
          = langle x,r cos theta,r sin thetarangle, hspace4mm
          r geq 0
          hspace4mm
          mbox and
          hspace4mm
          0leq theta leq 2pi,
          $$
          its Jacobian is
          $$
          beginalign*
          fracpartial(x,y,z)partial(x,r,theta)
          &=
          det
          beginpmatrix
          fracpartial xpartial x& fracpartial xpartial r & fracpartial xpartial theta \
          fracpartial ypartial x& fracpartial ypartial r & fracpartial ypartial theta \
          fracpartial zpartial x & fracpartial zpartial r & fracpartial zpartial theta \
          endpmatrix \
          &=
          det
          beginpmatrix
          1 & 0& 0 \
          0 & cos theta & -r sin theta \
          0 &sin theta & r cos theta \
          endpmatrix \
          &= r.
          endalign*
          $$







          share|cite|improve this answer













          share|cite|improve this answer



          share|cite|improve this answer











          answered 14 hours ago









          Mee Seong Im

          2,5591417




          2,5591417







          • 1




            exactly! Thanks
            – NPLS
            14 hours ago












          • 1




            exactly! Thanks
            – NPLS
            14 hours ago







          1




          1




          exactly! Thanks
          – NPLS
          14 hours ago




          exactly! Thanks
          – NPLS
          14 hours ago










          up vote
          1
          down vote













          You're going to want to convert to cylindrical coordinates, with $z$ being identified with the $x$-axis. (A diagram helps) The integral becomes $$int_0^2piint_0^3int_-sqrt25-r^2^sqrt25-r^2rcdot textdiv(F) dz dr dtheta$$
          Where $r$ is the Jacobian of the transformation $(r,theta,z)mapsto (z,rcos(theta),rsin(theta))$. The integral isn't so hard, so I'll leave it to "u" to finish :)






          share|cite|improve this answer

















          • 1




            shouldn't it be $dxdrdtheta$ ? becouse my cylinder is parallel to the x-axis
            – NPLS
            14 hours ago










          • @NPLS you can use $dx : dr : dtheta$ or $dz : dr : dtheta$, where we identify the variable $z$ to be the coordinate along the $x$-axis.
            – Mee Seong Im
            14 hours ago














          up vote
          1
          down vote













          You're going to want to convert to cylindrical coordinates, with $z$ being identified with the $x$-axis. (A diagram helps) The integral becomes $$int_0^2piint_0^3int_-sqrt25-r^2^sqrt25-r^2rcdot textdiv(F) dz dr dtheta$$
          Where $r$ is the Jacobian of the transformation $(r,theta,z)mapsto (z,rcos(theta),rsin(theta))$. The integral isn't so hard, so I'll leave it to "u" to finish :)






          share|cite|improve this answer

















          • 1




            shouldn't it be $dxdrdtheta$ ? becouse my cylinder is parallel to the x-axis
            – NPLS
            14 hours ago










          • @NPLS you can use $dx : dr : dtheta$ or $dz : dr : dtheta$, where we identify the variable $z$ to be the coordinate along the $x$-axis.
            – Mee Seong Im
            14 hours ago












          up vote
          1
          down vote










          up vote
          1
          down vote









          You're going to want to convert to cylindrical coordinates, with $z$ being identified with the $x$-axis. (A diagram helps) The integral becomes $$int_0^2piint_0^3int_-sqrt25-r^2^sqrt25-r^2rcdot textdiv(F) dz dr dtheta$$
          Where $r$ is the Jacobian of the transformation $(r,theta,z)mapsto (z,rcos(theta),rsin(theta))$. The integral isn't so hard, so I'll leave it to "u" to finish :)






          share|cite|improve this answer













          You're going to want to convert to cylindrical coordinates, with $z$ being identified with the $x$-axis. (A diagram helps) The integral becomes $$int_0^2piint_0^3int_-sqrt25-r^2^sqrt25-r^2rcdot textdiv(F) dz dr dtheta$$
          Where $r$ is the Jacobian of the transformation $(r,theta,z)mapsto (z,rcos(theta),rsin(theta))$. The integral isn't so hard, so I'll leave it to "u" to finish :)







          share|cite|improve this answer













          share|cite|improve this answer



          share|cite|improve this answer











          answered 15 hours ago









          Rafay A.

          564




          564







          • 1




            shouldn't it be $dxdrdtheta$ ? becouse my cylinder is parallel to the x-axis
            – NPLS
            14 hours ago










          • @NPLS you can use $dx : dr : dtheta$ or $dz : dr : dtheta$, where we identify the variable $z$ to be the coordinate along the $x$-axis.
            – Mee Seong Im
            14 hours ago












          • 1




            shouldn't it be $dxdrdtheta$ ? becouse my cylinder is parallel to the x-axis
            – NPLS
            14 hours ago










          • @NPLS you can use $dx : dr : dtheta$ or $dz : dr : dtheta$, where we identify the variable $z$ to be the coordinate along the $x$-axis.
            – Mee Seong Im
            14 hours ago







          1




          1




          shouldn't it be $dxdrdtheta$ ? becouse my cylinder is parallel to the x-axis
          – NPLS
          14 hours ago




          shouldn't it be $dxdrdtheta$ ? becouse my cylinder is parallel to the x-axis
          – NPLS
          14 hours ago












          @NPLS you can use $dx : dr : dtheta$ or $dz : dr : dtheta$, where we identify the variable $z$ to be the coordinate along the $x$-axis.
          – Mee Seong Im
          14 hours ago




          @NPLS you can use $dx : dr : dtheta$ or $dz : dr : dtheta$, where we identify the variable $z$ to be the coordinate along the $x$-axis.
          – Mee Seong Im
          14 hours ago












           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2873038%2fflux-outward-sphere-cylinder%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What is the equation of a 3D cone with generalised tilt?

          Relationship between determinant of matrix and determinant of adjoint?

          Color the edges and diagonals of a regular polygon