Flux outward Sphere-Cylinder
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
$D=x^2+y^2+z^2le 25,y^2+z^2le 9$
$F=y^2,x^2,z$
I need to calculate the flux outward the boundary of $D$.
I think I can use the divergent theorem, but How can I define the triple integral of the whole surface? Or Do I need to divide the surface into 3 parts ?
integration multivariable-calculus surfaces
add a comment |Â
up vote
0
down vote
favorite
$D=x^2+y^2+z^2le 25,y^2+z^2le 9$
$F=y^2,x^2,z$
I need to calculate the flux outward the boundary of $D$.
I think I can use the divergent theorem, but How can I define the triple integral of the whole surface? Or Do I need to divide the surface into 3 parts ?
integration multivariable-calculus surfaces
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
$D=x^2+y^2+z^2le 25,y^2+z^2le 9$
$F=y^2,x^2,z$
I need to calculate the flux outward the boundary of $D$.
I think I can use the divergent theorem, but How can I define the triple integral of the whole surface? Or Do I need to divide the surface into 3 parts ?
integration multivariable-calculus surfaces
$D=x^2+y^2+z^2le 25,y^2+z^2le 9$
$F=y^2,x^2,z$
I need to calculate the flux outward the boundary of $D$.
I think I can use the divergent theorem, but How can I define the triple integral of the whole surface? Or Do I need to divide the surface into 3 parts ?
integration multivariable-calculus surfaces
asked 15 hours ago
NPLS
1819
1819
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
1
down vote
accepted
Use the Divergence Theorem. That is,
$$
beginalign*
iint_E mathbfFcdot dmathbfS &= iiint_E textdiv (mathbfF) :dV \
&= iiint_E langle partial_x, partial_y, partial_z rangle cdot langle y^2,x^2,z rangle : dV \
&= iiint_E partial_x(y^2) + partial_y(x^2) + partial_z(z) : dV \
&=iiint_E 1 :dV \
&=iiint_E 1 :dx : dy : dz\
&=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 left|fracpartial(x,y,z)partial(x,r,theta) right| dx : dr : dtheta \
&=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 big|rbig| : dx : dr : dtheta \
&=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 r : dx : dr : dtheta hspace4mm
mbox since r geq 0 \
&= 2pi int_0^3 r (2sqrt25-r^2) : dr \
&= - 2pi int_25^16 sqrtu: du hspace4mm
mbox where u = 25-r^2, hspace4mm
mbox so hspace4mm
du = -2r :dr
\
&= frac4pi3left( 5^3 - 4^3 right) \
&= boxedfrac2443pi \
endalign*
$$
since given a parametrization in cylindrical coordinates
$$
mathbfr(x,r,theta)
= langle x(x,r,theta), y(x,r,theta), z(x,r,theta)rangle
= langle x,r cos theta,r sin thetarangle, hspace4mm
r geq 0
hspace4mm
mbox and
hspace4mm
0leq theta leq 2pi,
$$
its Jacobian is
$$
beginalign*
fracpartial(x,y,z)partial(x,r,theta)
&=
det
beginpmatrix
fracpartial xpartial x& fracpartial xpartial r & fracpartial xpartial theta \
fracpartial ypartial x& fracpartial ypartial r & fracpartial ypartial theta \
fracpartial zpartial x & fracpartial zpartial r & fracpartial zpartial theta \
endpmatrix \
&=
det
beginpmatrix
1 & 0& 0 \
0 & cos theta & -r sin theta \
0 &sin theta & r cos theta \
endpmatrix \
&= r.
endalign*
$$
1
exactly! Thanks
â NPLS
14 hours ago
add a comment |Â
up vote
1
down vote
You're going to want to convert to cylindrical coordinates, with $z$ being identified with the $x$-axis. (A diagram helps) The integral becomes $$int_0^2piint_0^3int_-sqrt25-r^2^sqrt25-r^2rcdot textdiv(F) dz dr dtheta$$
Where $r$ is the Jacobian of the transformation $(r,theta,z)mapsto (z,rcos(theta),rsin(theta))$. The integral isn't so hard, so I'll leave it to "u" to finish :)
1
shouldn't it be $dxdrdtheta$ ? becouse my cylinder is parallel to the x-axis
â NPLS
14 hours ago
@NPLS you can use $dx : dr : dtheta$ or $dz : dr : dtheta$, where we identify the variable $z$ to be the coordinate along the $x$-axis.
â Mee Seong Im
14 hours ago
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Use the Divergence Theorem. That is,
$$
beginalign*
iint_E mathbfFcdot dmathbfS &= iiint_E textdiv (mathbfF) :dV \
&= iiint_E langle partial_x, partial_y, partial_z rangle cdot langle y^2,x^2,z rangle : dV \
&= iiint_E partial_x(y^2) + partial_y(x^2) + partial_z(z) : dV \
&=iiint_E 1 :dV \
&=iiint_E 1 :dx : dy : dz\
&=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 left|fracpartial(x,y,z)partial(x,r,theta) right| dx : dr : dtheta \
&=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 big|rbig| : dx : dr : dtheta \
&=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 r : dx : dr : dtheta hspace4mm
mbox since r geq 0 \
&= 2pi int_0^3 r (2sqrt25-r^2) : dr \
&= - 2pi int_25^16 sqrtu: du hspace4mm
mbox where u = 25-r^2, hspace4mm
mbox so hspace4mm
du = -2r :dr
\
&= frac4pi3left( 5^3 - 4^3 right) \
&= boxedfrac2443pi \
endalign*
$$
since given a parametrization in cylindrical coordinates
$$
mathbfr(x,r,theta)
= langle x(x,r,theta), y(x,r,theta), z(x,r,theta)rangle
= langle x,r cos theta,r sin thetarangle, hspace4mm
r geq 0
hspace4mm
mbox and
hspace4mm
0leq theta leq 2pi,
$$
its Jacobian is
$$
beginalign*
fracpartial(x,y,z)partial(x,r,theta)
&=
det
beginpmatrix
fracpartial xpartial x& fracpartial xpartial r & fracpartial xpartial theta \
fracpartial ypartial x& fracpartial ypartial r & fracpartial ypartial theta \
fracpartial zpartial x & fracpartial zpartial r & fracpartial zpartial theta \
endpmatrix \
&=
det
beginpmatrix
1 & 0& 0 \
0 & cos theta & -r sin theta \
0 &sin theta & r cos theta \
endpmatrix \
&= r.
endalign*
$$
1
exactly! Thanks
â NPLS
14 hours ago
add a comment |Â
up vote
1
down vote
accepted
Use the Divergence Theorem. That is,
$$
beginalign*
iint_E mathbfFcdot dmathbfS &= iiint_E textdiv (mathbfF) :dV \
&= iiint_E langle partial_x, partial_y, partial_z rangle cdot langle y^2,x^2,z rangle : dV \
&= iiint_E partial_x(y^2) + partial_y(x^2) + partial_z(z) : dV \
&=iiint_E 1 :dV \
&=iiint_E 1 :dx : dy : dz\
&=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 left|fracpartial(x,y,z)partial(x,r,theta) right| dx : dr : dtheta \
&=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 big|rbig| : dx : dr : dtheta \
&=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 r : dx : dr : dtheta hspace4mm
mbox since r geq 0 \
&= 2pi int_0^3 r (2sqrt25-r^2) : dr \
&= - 2pi int_25^16 sqrtu: du hspace4mm
mbox where u = 25-r^2, hspace4mm
mbox so hspace4mm
du = -2r :dr
\
&= frac4pi3left( 5^3 - 4^3 right) \
&= boxedfrac2443pi \
endalign*
$$
since given a parametrization in cylindrical coordinates
$$
mathbfr(x,r,theta)
= langle x(x,r,theta), y(x,r,theta), z(x,r,theta)rangle
= langle x,r cos theta,r sin thetarangle, hspace4mm
r geq 0
hspace4mm
mbox and
hspace4mm
0leq theta leq 2pi,
$$
its Jacobian is
$$
beginalign*
fracpartial(x,y,z)partial(x,r,theta)
&=
det
beginpmatrix
fracpartial xpartial x& fracpartial xpartial r & fracpartial xpartial theta \
fracpartial ypartial x& fracpartial ypartial r & fracpartial ypartial theta \
fracpartial zpartial x & fracpartial zpartial r & fracpartial zpartial theta \
endpmatrix \
&=
det
beginpmatrix
1 & 0& 0 \
0 & cos theta & -r sin theta \
0 &sin theta & r cos theta \
endpmatrix \
&= r.
endalign*
$$
1
exactly! Thanks
â NPLS
14 hours ago
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Use the Divergence Theorem. That is,
$$
beginalign*
iint_E mathbfFcdot dmathbfS &= iiint_E textdiv (mathbfF) :dV \
&= iiint_E langle partial_x, partial_y, partial_z rangle cdot langle y^2,x^2,z rangle : dV \
&= iiint_E partial_x(y^2) + partial_y(x^2) + partial_z(z) : dV \
&=iiint_E 1 :dV \
&=iiint_E 1 :dx : dy : dz\
&=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 left|fracpartial(x,y,z)partial(x,r,theta) right| dx : dr : dtheta \
&=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 big|rbig| : dx : dr : dtheta \
&=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 r : dx : dr : dtheta hspace4mm
mbox since r geq 0 \
&= 2pi int_0^3 r (2sqrt25-r^2) : dr \
&= - 2pi int_25^16 sqrtu: du hspace4mm
mbox where u = 25-r^2, hspace4mm
mbox so hspace4mm
du = -2r :dr
\
&= frac4pi3left( 5^3 - 4^3 right) \
&= boxedfrac2443pi \
endalign*
$$
since given a parametrization in cylindrical coordinates
$$
mathbfr(x,r,theta)
= langle x(x,r,theta), y(x,r,theta), z(x,r,theta)rangle
= langle x,r cos theta,r sin thetarangle, hspace4mm
r geq 0
hspace4mm
mbox and
hspace4mm
0leq theta leq 2pi,
$$
its Jacobian is
$$
beginalign*
fracpartial(x,y,z)partial(x,r,theta)
&=
det
beginpmatrix
fracpartial xpartial x& fracpartial xpartial r & fracpartial xpartial theta \
fracpartial ypartial x& fracpartial ypartial r & fracpartial ypartial theta \
fracpartial zpartial x & fracpartial zpartial r & fracpartial zpartial theta \
endpmatrix \
&=
det
beginpmatrix
1 & 0& 0 \
0 & cos theta & -r sin theta \
0 &sin theta & r cos theta \
endpmatrix \
&= r.
endalign*
$$
Use the Divergence Theorem. That is,
$$
beginalign*
iint_E mathbfFcdot dmathbfS &= iiint_E textdiv (mathbfF) :dV \
&= iiint_E langle partial_x, partial_y, partial_z rangle cdot langle y^2,x^2,z rangle : dV \
&= iiint_E partial_x(y^2) + partial_y(x^2) + partial_z(z) : dV \
&=iiint_E 1 :dV \
&=iiint_E 1 :dx : dy : dz\
&=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 left|fracpartial(x,y,z)partial(x,r,theta) right| dx : dr : dtheta \
&=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 big|rbig| : dx : dr : dtheta \
&=int_0^2pi int_0^3 int_-sqrt25-r^2^sqrt25-r^2 r : dx : dr : dtheta hspace4mm
mbox since r geq 0 \
&= 2pi int_0^3 r (2sqrt25-r^2) : dr \
&= - 2pi int_25^16 sqrtu: du hspace4mm
mbox where u = 25-r^2, hspace4mm
mbox so hspace4mm
du = -2r :dr
\
&= frac4pi3left( 5^3 - 4^3 right) \
&= boxedfrac2443pi \
endalign*
$$
since given a parametrization in cylindrical coordinates
$$
mathbfr(x,r,theta)
= langle x(x,r,theta), y(x,r,theta), z(x,r,theta)rangle
= langle x,r cos theta,r sin thetarangle, hspace4mm
r geq 0
hspace4mm
mbox and
hspace4mm
0leq theta leq 2pi,
$$
its Jacobian is
$$
beginalign*
fracpartial(x,y,z)partial(x,r,theta)
&=
det
beginpmatrix
fracpartial xpartial x& fracpartial xpartial r & fracpartial xpartial theta \
fracpartial ypartial x& fracpartial ypartial r & fracpartial ypartial theta \
fracpartial zpartial x & fracpartial zpartial r & fracpartial zpartial theta \
endpmatrix \
&=
det
beginpmatrix
1 & 0& 0 \
0 & cos theta & -r sin theta \
0 &sin theta & r cos theta \
endpmatrix \
&= r.
endalign*
$$
answered 14 hours ago
Mee Seong Im
2,5591417
2,5591417
1
exactly! Thanks
â NPLS
14 hours ago
add a comment |Â
1
exactly! Thanks
â NPLS
14 hours ago
1
1
exactly! Thanks
â NPLS
14 hours ago
exactly! Thanks
â NPLS
14 hours ago
add a comment |Â
up vote
1
down vote
You're going to want to convert to cylindrical coordinates, with $z$ being identified with the $x$-axis. (A diagram helps) The integral becomes $$int_0^2piint_0^3int_-sqrt25-r^2^sqrt25-r^2rcdot textdiv(F) dz dr dtheta$$
Where $r$ is the Jacobian of the transformation $(r,theta,z)mapsto (z,rcos(theta),rsin(theta))$. The integral isn't so hard, so I'll leave it to "u" to finish :)
1
shouldn't it be $dxdrdtheta$ ? becouse my cylinder is parallel to the x-axis
â NPLS
14 hours ago
@NPLS you can use $dx : dr : dtheta$ or $dz : dr : dtheta$, where we identify the variable $z$ to be the coordinate along the $x$-axis.
â Mee Seong Im
14 hours ago
add a comment |Â
up vote
1
down vote
You're going to want to convert to cylindrical coordinates, with $z$ being identified with the $x$-axis. (A diagram helps) The integral becomes $$int_0^2piint_0^3int_-sqrt25-r^2^sqrt25-r^2rcdot textdiv(F) dz dr dtheta$$
Where $r$ is the Jacobian of the transformation $(r,theta,z)mapsto (z,rcos(theta),rsin(theta))$. The integral isn't so hard, so I'll leave it to "u" to finish :)
1
shouldn't it be $dxdrdtheta$ ? becouse my cylinder is parallel to the x-axis
â NPLS
14 hours ago
@NPLS you can use $dx : dr : dtheta$ or $dz : dr : dtheta$, where we identify the variable $z$ to be the coordinate along the $x$-axis.
â Mee Seong Im
14 hours ago
add a comment |Â
up vote
1
down vote
up vote
1
down vote
You're going to want to convert to cylindrical coordinates, with $z$ being identified with the $x$-axis. (A diagram helps) The integral becomes $$int_0^2piint_0^3int_-sqrt25-r^2^sqrt25-r^2rcdot textdiv(F) dz dr dtheta$$
Where $r$ is the Jacobian of the transformation $(r,theta,z)mapsto (z,rcos(theta),rsin(theta))$. The integral isn't so hard, so I'll leave it to "u" to finish :)
You're going to want to convert to cylindrical coordinates, with $z$ being identified with the $x$-axis. (A diagram helps) The integral becomes $$int_0^2piint_0^3int_-sqrt25-r^2^sqrt25-r^2rcdot textdiv(F) dz dr dtheta$$
Where $r$ is the Jacobian of the transformation $(r,theta,z)mapsto (z,rcos(theta),rsin(theta))$. The integral isn't so hard, so I'll leave it to "u" to finish :)
answered 15 hours ago
Rafay A.
564
564
1
shouldn't it be $dxdrdtheta$ ? becouse my cylinder is parallel to the x-axis
â NPLS
14 hours ago
@NPLS you can use $dx : dr : dtheta$ or $dz : dr : dtheta$, where we identify the variable $z$ to be the coordinate along the $x$-axis.
â Mee Seong Im
14 hours ago
add a comment |Â
1
shouldn't it be $dxdrdtheta$ ? becouse my cylinder is parallel to the x-axis
â NPLS
14 hours ago
@NPLS you can use $dx : dr : dtheta$ or $dz : dr : dtheta$, where we identify the variable $z$ to be the coordinate along the $x$-axis.
â Mee Seong Im
14 hours ago
1
1
shouldn't it be $dxdrdtheta$ ? becouse my cylinder is parallel to the x-axis
â NPLS
14 hours ago
shouldn't it be $dxdrdtheta$ ? becouse my cylinder is parallel to the x-axis
â NPLS
14 hours ago
@NPLS you can use $dx : dr : dtheta$ or $dz : dr : dtheta$, where we identify the variable $z$ to be the coordinate along the $x$-axis.
â Mee Seong Im
14 hours ago
@NPLS you can use $dx : dr : dtheta$ or $dz : dr : dtheta$, where we identify the variable $z$ to be the coordinate along the $x$-axis.
â Mee Seong Im
14 hours ago
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2873038%2fflux-outward-sphere-cylinder%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password