Calculating divergence of function containing mollyfier
Clash Royale CLAN TAG #URR8PPP up vote 0 down vote favorite Let $(phi_alpha)_alpha>0$ be a familiy of mollyfiers, $phi_alpha:mathbbR^n rightarrow mathbbR$ defined as: beginalign phi_1(x)=left{beginarrayrcl c cdot exp(frac-11-vert xvert^2) &,& vert x vert < 1\ 0 &,& textotherwise endarrayright. endalign with $c>0$ such that $int_R^n phi_1(x) dx=1$ and $phi_alpha(x)=alpha^-n phi_1(x/alpha)$ Consider the function $w(x)=(y_1-y_2) int_0^1 phi_epsilon(x-y_1+t(y_1-y_2)) ~dt$ with $y_1,y_2 in mathbbR^n $ and calculate its divergence $div~ w(x)= sum_i=1^n frac partial w_i(x)partial x_i.$ The result should be $div ~w(x) = phi_epsilon(x-y_2)-phi_epsilon(x-y_1)$. How do I calculate the divergence in this case? So far I tried to use the fundamental theorem of calculus, however the result was not the same. calculus divergence share | cite | improve this question asked Jul 18 at 8:32 akwa 30 5 add a comment  | up vote