How do I find the range of $y = a sin x + b cos x$
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
How do I find the range of $$ f(x) = a sin x + b cos x $$
My textbook says, $$R_f equiv left[ - sqrta^2+ b^2 , sqrta^2 + b^2 right] $$
But How? Why? How do I prove this?
functions trigonometry
add a comment |Â
up vote
0
down vote
favorite
How do I find the range of $$ f(x) = a sin x + b cos x $$
My textbook says, $$R_f equiv left[ - sqrta^2+ b^2 , sqrta^2 + b^2 right] $$
But How? Why? How do I prove this?
functions trigonometry
Have you heard of R-formula?
â Karn Watcharasupat
Jul 18 at 10:12
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
How do I find the range of $$ f(x) = a sin x + b cos x $$
My textbook says, $$R_f equiv left[ - sqrta^2+ b^2 , sqrta^2 + b^2 right] $$
But How? Why? How do I prove this?
functions trigonometry
How do I find the range of $$ f(x) = a sin x + b cos x $$
My textbook says, $$R_f equiv left[ - sqrta^2+ b^2 , sqrta^2 + b^2 right] $$
But How? Why? How do I prove this?
functions trigonometry
asked Jul 18 at 10:10
William
801214
801214
Have you heard of R-formula?
â Karn Watcharasupat
Jul 18 at 10:12
add a comment |Â
Have you heard of R-formula?
â Karn Watcharasupat
Jul 18 at 10:12
Have you heard of R-formula?
â Karn Watcharasupat
Jul 18 at 10:12
Have you heard of R-formula?
â Karn Watcharasupat
Jul 18 at 10:12
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
3
down vote
Suppose
beginalign
asin x + bcos x
&= Rcosphisin x+Rsinphicos x\
&= Rsin(x+phi)
endalign
Then
beginalign
Rcosphi&=atag1\Rsinphi&=btag2
endalign
$(1)^2+(2)^2$,
$$R^2cos^2phi+R^2sin^2phi=R^2(cos^2phi+sin^2)=R^2=a^2+b^2$$
By convention,
$$R=sqrta^2+b^2$$ but actually it can be negative, it doesn't matter.
So
beginalign
asin x + bcos x
&= sqrta^2+b^2sin(x+phi)
endalign
Since $-1lesin x le 1$,
the range is $$left[-sqrta^2+b^2,sqrta^2+b^2right]$$
To find $phi$,
$(2)/(1)$,
$$fracRsinphiRcosphi=tanphi=frac ba$$
So
$$phi=arctan frac ba$$
add a comment |Â
up vote
0
down vote
HINT:
Notice that $sin^2x+cos^2x=1implies sin x=sqrt1-cos^2x$ so find the stationary points of the function $$f(x)=asqrt1-cos^2x+bcos x$$
add a comment |Â
up vote
0
down vote
Let $y=asin x+bcos x$
Using Weierstrass substitution,
we have $$ t^2(b+y)-2at+y-b=0$$ where $t=tandfrac x2$
As $t$ is real, the discriminant must be $ge0$
i.e.,
$$(2a)^2ge4(b+y)(b-y)iff y^2le a^2+b^2$$
See also: mathworld.wolfram.com/SecondDerivativeTest.html
â lab bhattacharjee
Jul 18 at 12:14
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
Suppose
beginalign
asin x + bcos x
&= Rcosphisin x+Rsinphicos x\
&= Rsin(x+phi)
endalign
Then
beginalign
Rcosphi&=atag1\Rsinphi&=btag2
endalign
$(1)^2+(2)^2$,
$$R^2cos^2phi+R^2sin^2phi=R^2(cos^2phi+sin^2)=R^2=a^2+b^2$$
By convention,
$$R=sqrta^2+b^2$$ but actually it can be negative, it doesn't matter.
So
beginalign
asin x + bcos x
&= sqrta^2+b^2sin(x+phi)
endalign
Since $-1lesin x le 1$,
the range is $$left[-sqrta^2+b^2,sqrta^2+b^2right]$$
To find $phi$,
$(2)/(1)$,
$$fracRsinphiRcosphi=tanphi=frac ba$$
So
$$phi=arctan frac ba$$
add a comment |Â
up vote
3
down vote
Suppose
beginalign
asin x + bcos x
&= Rcosphisin x+Rsinphicos x\
&= Rsin(x+phi)
endalign
Then
beginalign
Rcosphi&=atag1\Rsinphi&=btag2
endalign
$(1)^2+(2)^2$,
$$R^2cos^2phi+R^2sin^2phi=R^2(cos^2phi+sin^2)=R^2=a^2+b^2$$
By convention,
$$R=sqrta^2+b^2$$ but actually it can be negative, it doesn't matter.
So
beginalign
asin x + bcos x
&= sqrta^2+b^2sin(x+phi)
endalign
Since $-1lesin x le 1$,
the range is $$left[-sqrta^2+b^2,sqrta^2+b^2right]$$
To find $phi$,
$(2)/(1)$,
$$fracRsinphiRcosphi=tanphi=frac ba$$
So
$$phi=arctan frac ba$$
add a comment |Â
up vote
3
down vote
up vote
3
down vote
Suppose
beginalign
asin x + bcos x
&= Rcosphisin x+Rsinphicos x\
&= Rsin(x+phi)
endalign
Then
beginalign
Rcosphi&=atag1\Rsinphi&=btag2
endalign
$(1)^2+(2)^2$,
$$R^2cos^2phi+R^2sin^2phi=R^2(cos^2phi+sin^2)=R^2=a^2+b^2$$
By convention,
$$R=sqrta^2+b^2$$ but actually it can be negative, it doesn't matter.
So
beginalign
asin x + bcos x
&= sqrta^2+b^2sin(x+phi)
endalign
Since $-1lesin x le 1$,
the range is $$left[-sqrta^2+b^2,sqrta^2+b^2right]$$
To find $phi$,
$(2)/(1)$,
$$fracRsinphiRcosphi=tanphi=frac ba$$
So
$$phi=arctan frac ba$$
Suppose
beginalign
asin x + bcos x
&= Rcosphisin x+Rsinphicos x\
&= Rsin(x+phi)
endalign
Then
beginalign
Rcosphi&=atag1\Rsinphi&=btag2
endalign
$(1)^2+(2)^2$,
$$R^2cos^2phi+R^2sin^2phi=R^2(cos^2phi+sin^2)=R^2=a^2+b^2$$
By convention,
$$R=sqrta^2+b^2$$ but actually it can be negative, it doesn't matter.
So
beginalign
asin x + bcos x
&= sqrta^2+b^2sin(x+phi)
endalign
Since $-1lesin x le 1$,
the range is $$left[-sqrta^2+b^2,sqrta^2+b^2right]$$
To find $phi$,
$(2)/(1)$,
$$fracRsinphiRcosphi=tanphi=frac ba$$
So
$$phi=arctan frac ba$$
answered Jul 18 at 10:18
Karn Watcharasupat
3,8192426
3,8192426
add a comment |Â
add a comment |Â
up vote
0
down vote
HINT:
Notice that $sin^2x+cos^2x=1implies sin x=sqrt1-cos^2x$ so find the stationary points of the function $$f(x)=asqrt1-cos^2x+bcos x$$
add a comment |Â
up vote
0
down vote
HINT:
Notice that $sin^2x+cos^2x=1implies sin x=sqrt1-cos^2x$ so find the stationary points of the function $$f(x)=asqrt1-cos^2x+bcos x$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
HINT:
Notice that $sin^2x+cos^2x=1implies sin x=sqrt1-cos^2x$ so find the stationary points of the function $$f(x)=asqrt1-cos^2x+bcos x$$
HINT:
Notice that $sin^2x+cos^2x=1implies sin x=sqrt1-cos^2x$ so find the stationary points of the function $$f(x)=asqrt1-cos^2x+bcos x$$
answered Jul 18 at 10:13
TheSimpliFire
9,67361951
9,67361951
add a comment |Â
add a comment |Â
up vote
0
down vote
Let $y=asin x+bcos x$
Using Weierstrass substitution,
we have $$ t^2(b+y)-2at+y-b=0$$ where $t=tandfrac x2$
As $t$ is real, the discriminant must be $ge0$
i.e.,
$$(2a)^2ge4(b+y)(b-y)iff y^2le a^2+b^2$$
See also: mathworld.wolfram.com/SecondDerivativeTest.html
â lab bhattacharjee
Jul 18 at 12:14
add a comment |Â
up vote
0
down vote
Let $y=asin x+bcos x$
Using Weierstrass substitution,
we have $$ t^2(b+y)-2at+y-b=0$$ where $t=tandfrac x2$
As $t$ is real, the discriminant must be $ge0$
i.e.,
$$(2a)^2ge4(b+y)(b-y)iff y^2le a^2+b^2$$
See also: mathworld.wolfram.com/SecondDerivativeTest.html
â lab bhattacharjee
Jul 18 at 12:14
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Let $y=asin x+bcos x$
Using Weierstrass substitution,
we have $$ t^2(b+y)-2at+y-b=0$$ where $t=tandfrac x2$
As $t$ is real, the discriminant must be $ge0$
i.e.,
$$(2a)^2ge4(b+y)(b-y)iff y^2le a^2+b^2$$
Let $y=asin x+bcos x$
Using Weierstrass substitution,
we have $$ t^2(b+y)-2at+y-b=0$$ where $t=tandfrac x2$
As $t$ is real, the discriminant must be $ge0$
i.e.,
$$(2a)^2ge4(b+y)(b-y)iff y^2le a^2+b^2$$
answered Jul 18 at 12:12
lab bhattacharjee
215k14152264
215k14152264
See also: mathworld.wolfram.com/SecondDerivativeTest.html
â lab bhattacharjee
Jul 18 at 12:14
add a comment |Â
See also: mathworld.wolfram.com/SecondDerivativeTest.html
â lab bhattacharjee
Jul 18 at 12:14
See also: mathworld.wolfram.com/SecondDerivativeTest.html
â lab bhattacharjee
Jul 18 at 12:14
See also: mathworld.wolfram.com/SecondDerivativeTest.html
â lab bhattacharjee
Jul 18 at 12:14
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2855431%2fhow-do-i-find-the-range-of-y-a-sin-x-b-cos-x%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Have you heard of R-formula?
â Karn Watcharasupat
Jul 18 at 10:12