How do I find the range of $y = a sin x + b cos x$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












How do I find the range of $$ f(x) = a sin x + b cos x $$



My textbook says, $$R_f equiv left[ - sqrta^2+ b^2 , sqrta^2 + b^2 right] $$



But How? Why? How do I prove this?







share|cite|improve this question



















  • Have you heard of R-formula?
    – Karn Watcharasupat
    Jul 18 at 10:12














up vote
0
down vote

favorite












How do I find the range of $$ f(x) = a sin x + b cos x $$



My textbook says, $$R_f equiv left[ - sqrta^2+ b^2 , sqrta^2 + b^2 right] $$



But How? Why? How do I prove this?







share|cite|improve this question



















  • Have you heard of R-formula?
    – Karn Watcharasupat
    Jul 18 at 10:12












up vote
0
down vote

favorite









up vote
0
down vote

favorite











How do I find the range of $$ f(x) = a sin x + b cos x $$



My textbook says, $$R_f equiv left[ - sqrta^2+ b^2 , sqrta^2 + b^2 right] $$



But How? Why? How do I prove this?







share|cite|improve this question











How do I find the range of $$ f(x) = a sin x + b cos x $$



My textbook says, $$R_f equiv left[ - sqrta^2+ b^2 , sqrta^2 + b^2 right] $$



But How? Why? How do I prove this?









share|cite|improve this question










share|cite|improve this question




share|cite|improve this question









asked Jul 18 at 10:10









William

801214




801214











  • Have you heard of R-formula?
    – Karn Watcharasupat
    Jul 18 at 10:12
















  • Have you heard of R-formula?
    – Karn Watcharasupat
    Jul 18 at 10:12















Have you heard of R-formula?
– Karn Watcharasupat
Jul 18 at 10:12




Have you heard of R-formula?
– Karn Watcharasupat
Jul 18 at 10:12










3 Answers
3






active

oldest

votes

















up vote
3
down vote













Suppose
beginalign
asin x + bcos x
&= Rcosphisin x+Rsinphicos x\
&= Rsin(x+phi)
endalign



Then
beginalign
Rcosphi&=atag1\Rsinphi&=btag2
endalign



$(1)^2+(2)^2$,
$$R^2cos^2phi+R^2sin^2phi=R^2(cos^2phi+sin^2)=R^2=a^2+b^2$$
By convention,
$$R=sqrta^2+b^2$$ but actually it can be negative, it doesn't matter.



So
beginalign
asin x + bcos x
&= sqrta^2+b^2sin(x+phi)
endalign



Since $-1lesin x le 1$,
the range is $$left[-sqrta^2+b^2,sqrta^2+b^2right]$$




To find $phi$,



$(2)/(1)$,
$$fracRsinphiRcosphi=tanphi=frac ba$$
So
$$phi=arctan frac ba$$






share|cite|improve this answer




























    up vote
    0
    down vote













    HINT:



    Notice that $sin^2x+cos^2x=1implies sin x=sqrt1-cos^2x$ so find the stationary points of the function $$f(x)=asqrt1-cos^2x+bcos x$$






    share|cite|improve this answer




























      up vote
      0
      down vote













      Let $y=asin x+bcos x$



      Using Weierstrass substitution,



      we have $$ t^2(b+y)-2at+y-b=0$$ where $t=tandfrac x2$



      As $t$ is real, the discriminant must be $ge0$



      i.e.,
      $$(2a)^2ge4(b+y)(b-y)iff y^2le a^2+b^2$$






      share|cite|improve this answer





















      • See also: mathworld.wolfram.com/SecondDerivativeTest.html
        – lab bhattacharjee
        Jul 18 at 12:14










      Your Answer




      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: false,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );








       

      draft saved


      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2855431%2fhow-do-i-find-the-range-of-y-a-sin-x-b-cos-x%23new-answer', 'question_page');

      );

      Post as a guest






























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      3
      down vote













      Suppose
      beginalign
      asin x + bcos x
      &= Rcosphisin x+Rsinphicos x\
      &= Rsin(x+phi)
      endalign



      Then
      beginalign
      Rcosphi&=atag1\Rsinphi&=btag2
      endalign



      $(1)^2+(2)^2$,
      $$R^2cos^2phi+R^2sin^2phi=R^2(cos^2phi+sin^2)=R^2=a^2+b^2$$
      By convention,
      $$R=sqrta^2+b^2$$ but actually it can be negative, it doesn't matter.



      So
      beginalign
      asin x + bcos x
      &= sqrta^2+b^2sin(x+phi)
      endalign



      Since $-1lesin x le 1$,
      the range is $$left[-sqrta^2+b^2,sqrta^2+b^2right]$$




      To find $phi$,



      $(2)/(1)$,
      $$fracRsinphiRcosphi=tanphi=frac ba$$
      So
      $$phi=arctan frac ba$$






      share|cite|improve this answer

























        up vote
        3
        down vote













        Suppose
        beginalign
        asin x + bcos x
        &= Rcosphisin x+Rsinphicos x\
        &= Rsin(x+phi)
        endalign



        Then
        beginalign
        Rcosphi&=atag1\Rsinphi&=btag2
        endalign



        $(1)^2+(2)^2$,
        $$R^2cos^2phi+R^2sin^2phi=R^2(cos^2phi+sin^2)=R^2=a^2+b^2$$
        By convention,
        $$R=sqrta^2+b^2$$ but actually it can be negative, it doesn't matter.



        So
        beginalign
        asin x + bcos x
        &= sqrta^2+b^2sin(x+phi)
        endalign



        Since $-1lesin x le 1$,
        the range is $$left[-sqrta^2+b^2,sqrta^2+b^2right]$$




        To find $phi$,



        $(2)/(1)$,
        $$fracRsinphiRcosphi=tanphi=frac ba$$
        So
        $$phi=arctan frac ba$$






        share|cite|improve this answer























          up vote
          3
          down vote










          up vote
          3
          down vote









          Suppose
          beginalign
          asin x + bcos x
          &= Rcosphisin x+Rsinphicos x\
          &= Rsin(x+phi)
          endalign



          Then
          beginalign
          Rcosphi&=atag1\Rsinphi&=btag2
          endalign



          $(1)^2+(2)^2$,
          $$R^2cos^2phi+R^2sin^2phi=R^2(cos^2phi+sin^2)=R^2=a^2+b^2$$
          By convention,
          $$R=sqrta^2+b^2$$ but actually it can be negative, it doesn't matter.



          So
          beginalign
          asin x + bcos x
          &= sqrta^2+b^2sin(x+phi)
          endalign



          Since $-1lesin x le 1$,
          the range is $$left[-sqrta^2+b^2,sqrta^2+b^2right]$$




          To find $phi$,



          $(2)/(1)$,
          $$fracRsinphiRcosphi=tanphi=frac ba$$
          So
          $$phi=arctan frac ba$$






          share|cite|improve this answer













          Suppose
          beginalign
          asin x + bcos x
          &= Rcosphisin x+Rsinphicos x\
          &= Rsin(x+phi)
          endalign



          Then
          beginalign
          Rcosphi&=atag1\Rsinphi&=btag2
          endalign



          $(1)^2+(2)^2$,
          $$R^2cos^2phi+R^2sin^2phi=R^2(cos^2phi+sin^2)=R^2=a^2+b^2$$
          By convention,
          $$R=sqrta^2+b^2$$ but actually it can be negative, it doesn't matter.



          So
          beginalign
          asin x + bcos x
          &= sqrta^2+b^2sin(x+phi)
          endalign



          Since $-1lesin x le 1$,
          the range is $$left[-sqrta^2+b^2,sqrta^2+b^2right]$$




          To find $phi$,



          $(2)/(1)$,
          $$fracRsinphiRcosphi=tanphi=frac ba$$
          So
          $$phi=arctan frac ba$$







          share|cite|improve this answer













          share|cite|improve this answer



          share|cite|improve this answer











          answered Jul 18 at 10:18









          Karn Watcharasupat

          3,8192426




          3,8192426




















              up vote
              0
              down vote













              HINT:



              Notice that $sin^2x+cos^2x=1implies sin x=sqrt1-cos^2x$ so find the stationary points of the function $$f(x)=asqrt1-cos^2x+bcos x$$






              share|cite|improve this answer

























                up vote
                0
                down vote













                HINT:



                Notice that $sin^2x+cos^2x=1implies sin x=sqrt1-cos^2x$ so find the stationary points of the function $$f(x)=asqrt1-cos^2x+bcos x$$






                share|cite|improve this answer























                  up vote
                  0
                  down vote










                  up vote
                  0
                  down vote









                  HINT:



                  Notice that $sin^2x+cos^2x=1implies sin x=sqrt1-cos^2x$ so find the stationary points of the function $$f(x)=asqrt1-cos^2x+bcos x$$






                  share|cite|improve this answer













                  HINT:



                  Notice that $sin^2x+cos^2x=1implies sin x=sqrt1-cos^2x$ so find the stationary points of the function $$f(x)=asqrt1-cos^2x+bcos x$$







                  share|cite|improve this answer













                  share|cite|improve this answer



                  share|cite|improve this answer











                  answered Jul 18 at 10:13









                  TheSimpliFire

                  9,67361951




                  9,67361951




















                      up vote
                      0
                      down vote













                      Let $y=asin x+bcos x$



                      Using Weierstrass substitution,



                      we have $$ t^2(b+y)-2at+y-b=0$$ where $t=tandfrac x2$



                      As $t$ is real, the discriminant must be $ge0$



                      i.e.,
                      $$(2a)^2ge4(b+y)(b-y)iff y^2le a^2+b^2$$






                      share|cite|improve this answer





















                      • See also: mathworld.wolfram.com/SecondDerivativeTest.html
                        – lab bhattacharjee
                        Jul 18 at 12:14














                      up vote
                      0
                      down vote













                      Let $y=asin x+bcos x$



                      Using Weierstrass substitution,



                      we have $$ t^2(b+y)-2at+y-b=0$$ where $t=tandfrac x2$



                      As $t$ is real, the discriminant must be $ge0$



                      i.e.,
                      $$(2a)^2ge4(b+y)(b-y)iff y^2le a^2+b^2$$






                      share|cite|improve this answer





















                      • See also: mathworld.wolfram.com/SecondDerivativeTest.html
                        – lab bhattacharjee
                        Jul 18 at 12:14












                      up vote
                      0
                      down vote










                      up vote
                      0
                      down vote









                      Let $y=asin x+bcos x$



                      Using Weierstrass substitution,



                      we have $$ t^2(b+y)-2at+y-b=0$$ where $t=tandfrac x2$



                      As $t$ is real, the discriminant must be $ge0$



                      i.e.,
                      $$(2a)^2ge4(b+y)(b-y)iff y^2le a^2+b^2$$






                      share|cite|improve this answer













                      Let $y=asin x+bcos x$



                      Using Weierstrass substitution,



                      we have $$ t^2(b+y)-2at+y-b=0$$ where $t=tandfrac x2$



                      As $t$ is real, the discriminant must be $ge0$



                      i.e.,
                      $$(2a)^2ge4(b+y)(b-y)iff y^2le a^2+b^2$$







                      share|cite|improve this answer













                      share|cite|improve this answer



                      share|cite|improve this answer











                      answered Jul 18 at 12:12









                      lab bhattacharjee

                      215k14152264




                      215k14152264











                      • See also: mathworld.wolfram.com/SecondDerivativeTest.html
                        – lab bhattacharjee
                        Jul 18 at 12:14
















                      • See also: mathworld.wolfram.com/SecondDerivativeTest.html
                        – lab bhattacharjee
                        Jul 18 at 12:14















                      See also: mathworld.wolfram.com/SecondDerivativeTest.html
                      – lab bhattacharjee
                      Jul 18 at 12:14




                      See also: mathworld.wolfram.com/SecondDerivativeTest.html
                      – lab bhattacharjee
                      Jul 18 at 12:14












                       

                      draft saved


                      draft discarded


























                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2855431%2fhow-do-i-find-the-range-of-y-a-sin-x-b-cos-x%23new-answer', 'question_page');

                      );

                      Post as a guest













































































                      Comments

                      Popular posts from this blog

                      What is the equation of a 3D cone with generalised tilt?

                      Color the edges and diagonals of a regular polygon

                      Relationship between determinant of matrix and determinant of adjoint?