Asymptotic expansion of integral with standard normal distribution cdf

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite
1












I am looking for the asymptotic expansion of the following expression as $taurightarrow0$ :



$F(tau) = int_0^taue^-rumathcalNleft(fraclogleft(fracbarxleft(tau-uright)x+aright)-mu usigmasqrturight)du$, where :



$r>0, sigma>0, mu>0, a>0, mathcalN$ the c.d.f of a standard normal distribution and $barx(tau)sim_0 (x+a)(1-sigmasqrt-taulntau)$



First, note that :



$F(tau)=tauint_0^1e^-rtau umathcalNleft(fraclogleft(fracbarxleft(tauleft(1-uright)right)x+aright)-mu utausigmasqrttau uright)d u$



Now, let v:=1-u and :



$logleft(fracbarxleft(vtauright)x+aright) =logleft(fracx+aleft(1-sigmasqrt-tau vlogtau vright)x+a+oleft(-sqrt-tau vlogtau vright)right)
=-sigmasqrt-tau vlogtau v+oleft(sqrt-tau vlogtau vright)$



Hence :



$fraclogleft(fracbarxleft(tau vright)x+aright)-mu utausigmasqrttau u=-sqrt-fracvulogtau v+oleft(-sqrt-fracvulogtau vright)=-sqrt-fracvulogtau+oleft(-sqrt-logtauright)$



Now, recall that one has :



$mathcalNleft(xright)underset-inftysim-expleft(-fracx^22right)frac1sqrt2pix$



Finally :



$Fleft(tauright)=tauint_0^1left(1-rtau u+oleft(tau uright)right)fracexpleft[frac1-u2uleft(logleft(tauright)+oleft(logleft(tauright)right)right)right]sqrt2pileft(-sqrt-fracvulogtau+oleft(-sqrt-logtauright)right)du$



$F(tau)=tauint_0^1fracexpleft[frac1-u2uleft(logleft(tauright)+oleft(logleft(tauright)right)right)right]sqrt2pileft(-sqrt-fracvulogtau+oleft(-sqrt-logtauright)right)du+Oleft(tau^2right)$



Computing the integral yields :



$sqrt-fractaulogtaufracsqrt2pisqrt-taulogtau+pitexterfcleft[frac-sqrtlogtausqrt2right]left(1+logtauright)2sqrt2pi$ and using a Taylor expansion, we finally obtain :



$F(tau)sim_0 sqrtfrac-1logtaufracleft(3+2logtauleft(1+logtauright)right)tau2left(-logtauright)^frac52+Oleft(tau^2right)$



Do you agree with the following ?







share|cite|improve this question























    up vote
    0
    down vote

    favorite
    1












    I am looking for the asymptotic expansion of the following expression as $taurightarrow0$ :



    $F(tau) = int_0^taue^-rumathcalNleft(fraclogleft(fracbarxleft(tau-uright)x+aright)-mu usigmasqrturight)du$, where :



    $r>0, sigma>0, mu>0, a>0, mathcalN$ the c.d.f of a standard normal distribution and $barx(tau)sim_0 (x+a)(1-sigmasqrt-taulntau)$



    First, note that :



    $F(tau)=tauint_0^1e^-rtau umathcalNleft(fraclogleft(fracbarxleft(tauleft(1-uright)right)x+aright)-mu utausigmasqrttau uright)d u$



    Now, let v:=1-u and :



    $logleft(fracbarxleft(vtauright)x+aright) =logleft(fracx+aleft(1-sigmasqrt-tau vlogtau vright)x+a+oleft(-sqrt-tau vlogtau vright)right)
    =-sigmasqrt-tau vlogtau v+oleft(sqrt-tau vlogtau vright)$



    Hence :



    $fraclogleft(fracbarxleft(tau vright)x+aright)-mu utausigmasqrttau u=-sqrt-fracvulogtau v+oleft(-sqrt-fracvulogtau vright)=-sqrt-fracvulogtau+oleft(-sqrt-logtauright)$



    Now, recall that one has :



    $mathcalNleft(xright)underset-inftysim-expleft(-fracx^22right)frac1sqrt2pix$



    Finally :



    $Fleft(tauright)=tauint_0^1left(1-rtau u+oleft(tau uright)right)fracexpleft[frac1-u2uleft(logleft(tauright)+oleft(logleft(tauright)right)right)right]sqrt2pileft(-sqrt-fracvulogtau+oleft(-sqrt-logtauright)right)du$



    $F(tau)=tauint_0^1fracexpleft[frac1-u2uleft(logleft(tauright)+oleft(logleft(tauright)right)right)right]sqrt2pileft(-sqrt-fracvulogtau+oleft(-sqrt-logtauright)right)du+Oleft(tau^2right)$



    Computing the integral yields :



    $sqrt-fractaulogtaufracsqrt2pisqrt-taulogtau+pitexterfcleft[frac-sqrtlogtausqrt2right]left(1+logtauright)2sqrt2pi$ and using a Taylor expansion, we finally obtain :



    $F(tau)sim_0 sqrtfrac-1logtaufracleft(3+2logtauleft(1+logtauright)right)tau2left(-logtauright)^frac52+Oleft(tau^2right)$



    Do you agree with the following ?







    share|cite|improve this question





















      up vote
      0
      down vote

      favorite
      1









      up vote
      0
      down vote

      favorite
      1






      1





      I am looking for the asymptotic expansion of the following expression as $taurightarrow0$ :



      $F(tau) = int_0^taue^-rumathcalNleft(fraclogleft(fracbarxleft(tau-uright)x+aright)-mu usigmasqrturight)du$, where :



      $r>0, sigma>0, mu>0, a>0, mathcalN$ the c.d.f of a standard normal distribution and $barx(tau)sim_0 (x+a)(1-sigmasqrt-taulntau)$



      First, note that :



      $F(tau)=tauint_0^1e^-rtau umathcalNleft(fraclogleft(fracbarxleft(tauleft(1-uright)right)x+aright)-mu utausigmasqrttau uright)d u$



      Now, let v:=1-u and :



      $logleft(fracbarxleft(vtauright)x+aright) =logleft(fracx+aleft(1-sigmasqrt-tau vlogtau vright)x+a+oleft(-sqrt-tau vlogtau vright)right)
      =-sigmasqrt-tau vlogtau v+oleft(sqrt-tau vlogtau vright)$



      Hence :



      $fraclogleft(fracbarxleft(tau vright)x+aright)-mu utausigmasqrttau u=-sqrt-fracvulogtau v+oleft(-sqrt-fracvulogtau vright)=-sqrt-fracvulogtau+oleft(-sqrt-logtauright)$



      Now, recall that one has :



      $mathcalNleft(xright)underset-inftysim-expleft(-fracx^22right)frac1sqrt2pix$



      Finally :



      $Fleft(tauright)=tauint_0^1left(1-rtau u+oleft(tau uright)right)fracexpleft[frac1-u2uleft(logleft(tauright)+oleft(logleft(tauright)right)right)right]sqrt2pileft(-sqrt-fracvulogtau+oleft(-sqrt-logtauright)right)du$



      $F(tau)=tauint_0^1fracexpleft[frac1-u2uleft(logleft(tauright)+oleft(logleft(tauright)right)right)right]sqrt2pileft(-sqrt-fracvulogtau+oleft(-sqrt-logtauright)right)du+Oleft(tau^2right)$



      Computing the integral yields :



      $sqrt-fractaulogtaufracsqrt2pisqrt-taulogtau+pitexterfcleft[frac-sqrtlogtausqrt2right]left(1+logtauright)2sqrt2pi$ and using a Taylor expansion, we finally obtain :



      $F(tau)sim_0 sqrtfrac-1logtaufracleft(3+2logtauleft(1+logtauright)right)tau2left(-logtauright)^frac52+Oleft(tau^2right)$



      Do you agree with the following ?







      share|cite|improve this question











      I am looking for the asymptotic expansion of the following expression as $taurightarrow0$ :



      $F(tau) = int_0^taue^-rumathcalNleft(fraclogleft(fracbarxleft(tau-uright)x+aright)-mu usigmasqrturight)du$, where :



      $r>0, sigma>0, mu>0, a>0, mathcalN$ the c.d.f of a standard normal distribution and $barx(tau)sim_0 (x+a)(1-sigmasqrt-taulntau)$



      First, note that :



      $F(tau)=tauint_0^1e^-rtau umathcalNleft(fraclogleft(fracbarxleft(tauleft(1-uright)right)x+aright)-mu utausigmasqrttau uright)d u$



      Now, let v:=1-u and :



      $logleft(fracbarxleft(vtauright)x+aright) =logleft(fracx+aleft(1-sigmasqrt-tau vlogtau vright)x+a+oleft(-sqrt-tau vlogtau vright)right)
      =-sigmasqrt-tau vlogtau v+oleft(sqrt-tau vlogtau vright)$



      Hence :



      $fraclogleft(fracbarxleft(tau vright)x+aright)-mu utausigmasqrttau u=-sqrt-fracvulogtau v+oleft(-sqrt-fracvulogtau vright)=-sqrt-fracvulogtau+oleft(-sqrt-logtauright)$



      Now, recall that one has :



      $mathcalNleft(xright)underset-inftysim-expleft(-fracx^22right)frac1sqrt2pix$



      Finally :



      $Fleft(tauright)=tauint_0^1left(1-rtau u+oleft(tau uright)right)fracexpleft[frac1-u2uleft(logleft(tauright)+oleft(logleft(tauright)right)right)right]sqrt2pileft(-sqrt-fracvulogtau+oleft(-sqrt-logtauright)right)du$



      $F(tau)=tauint_0^1fracexpleft[frac1-u2uleft(logleft(tauright)+oleft(logleft(tauright)right)right)right]sqrt2pileft(-sqrt-fracvulogtau+oleft(-sqrt-logtauright)right)du+Oleft(tau^2right)$



      Computing the integral yields :



      $sqrt-fractaulogtaufracsqrt2pisqrt-taulogtau+pitexterfcleft[frac-sqrtlogtausqrt2right]left(1+logtauright)2sqrt2pi$ and using a Taylor expansion, we finally obtain :



      $F(tau)sim_0 sqrtfrac-1logtaufracleft(3+2logtauleft(1+logtauright)right)tau2left(-logtauright)^frac52+Oleft(tau^2right)$



      Do you agree with the following ?









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked Jul 18 at 11:20









      flo3299

      164




      164

























          active

          oldest

          votes











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2855487%2fasymptotic-expansion-of-integral-with-standard-normal-distribution-cdf%23new-answer', 'question_page');

          );

          Post as a guest



































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes










           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2855487%2fasymptotic-expansion-of-integral-with-standard-normal-distribution-cdf%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What is the equation of a 3D cone with generalised tilt?

          Color the edges and diagonals of a regular polygon

          Relationship between determinant of matrix and determinant of adjoint?