Asymptotic expansion of integral with standard normal distribution cdf
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
I am looking for the asymptotic expansion of the following expression as $taurightarrow0$ :
$F(tau) = int_0^taue^-rumathcalNleft(fraclogleft(fracbarxleft(tau-uright)x+aright)-mu usigmasqrturight)du$, where :
$r>0, sigma>0, mu>0, a>0, mathcalN$ the c.d.f of a standard normal distribution and $barx(tau)sim_0 (x+a)(1-sigmasqrt-taulntau)$
First, note that :
$F(tau)=tauint_0^1e^-rtau umathcalNleft(fraclogleft(fracbarxleft(tauleft(1-uright)right)x+aright)-mu utausigmasqrttau uright)d u$
Now, let v:=1-u and :
$logleft(fracbarxleft(vtauright)x+aright) =logleft(fracx+aleft(1-sigmasqrt-tau vlogtau vright)x+a+oleft(-sqrt-tau vlogtau vright)right)
=-sigmasqrt-tau vlogtau v+oleft(sqrt-tau vlogtau vright)$
Hence :
$fraclogleft(fracbarxleft(tau vright)x+aright)-mu utausigmasqrttau u=-sqrt-fracvulogtau v+oleft(-sqrt-fracvulogtau vright)=-sqrt-fracvulogtau+oleft(-sqrt-logtauright)$
Now, recall that one has :
$mathcalNleft(xright)underset-inftysim-expleft(-fracx^22right)frac1sqrt2pix$
Finally :
$Fleft(tauright)=tauint_0^1left(1-rtau u+oleft(tau uright)right)fracexpleft[frac1-u2uleft(logleft(tauright)+oleft(logleft(tauright)right)right)right]sqrt2pileft(-sqrt-fracvulogtau+oleft(-sqrt-logtauright)right)du$
$F(tau)=tauint_0^1fracexpleft[frac1-u2uleft(logleft(tauright)+oleft(logleft(tauright)right)right)right]sqrt2pileft(-sqrt-fracvulogtau+oleft(-sqrt-logtauright)right)du+Oleft(tau^2right)$
Computing the integral yields :
$sqrt-fractaulogtaufracsqrt2pisqrt-taulogtau+pitexterfcleft[frac-sqrtlogtausqrt2right]left(1+logtauright)2sqrt2pi$ and using a Taylor expansion, we finally obtain :
$F(tau)sim_0 sqrtfrac-1logtaufracleft(3+2logtauleft(1+logtauright)right)tau2left(-logtauright)^frac52+Oleft(tau^2right)$
Do you agree with the following ?
real-analysis limits taylor-expansion special-functions
add a comment |Â
up vote
0
down vote
favorite
I am looking for the asymptotic expansion of the following expression as $taurightarrow0$ :
$F(tau) = int_0^taue^-rumathcalNleft(fraclogleft(fracbarxleft(tau-uright)x+aright)-mu usigmasqrturight)du$, where :
$r>0, sigma>0, mu>0, a>0, mathcalN$ the c.d.f of a standard normal distribution and $barx(tau)sim_0 (x+a)(1-sigmasqrt-taulntau)$
First, note that :
$F(tau)=tauint_0^1e^-rtau umathcalNleft(fraclogleft(fracbarxleft(tauleft(1-uright)right)x+aright)-mu utausigmasqrttau uright)d u$
Now, let v:=1-u and :
$logleft(fracbarxleft(vtauright)x+aright) =logleft(fracx+aleft(1-sigmasqrt-tau vlogtau vright)x+a+oleft(-sqrt-tau vlogtau vright)right)
=-sigmasqrt-tau vlogtau v+oleft(sqrt-tau vlogtau vright)$
Hence :
$fraclogleft(fracbarxleft(tau vright)x+aright)-mu utausigmasqrttau u=-sqrt-fracvulogtau v+oleft(-sqrt-fracvulogtau vright)=-sqrt-fracvulogtau+oleft(-sqrt-logtauright)$
Now, recall that one has :
$mathcalNleft(xright)underset-inftysim-expleft(-fracx^22right)frac1sqrt2pix$
Finally :
$Fleft(tauright)=tauint_0^1left(1-rtau u+oleft(tau uright)right)fracexpleft[frac1-u2uleft(logleft(tauright)+oleft(logleft(tauright)right)right)right]sqrt2pileft(-sqrt-fracvulogtau+oleft(-sqrt-logtauright)right)du$
$F(tau)=tauint_0^1fracexpleft[frac1-u2uleft(logleft(tauright)+oleft(logleft(tauright)right)right)right]sqrt2pileft(-sqrt-fracvulogtau+oleft(-sqrt-logtauright)right)du+Oleft(tau^2right)$
Computing the integral yields :
$sqrt-fractaulogtaufracsqrt2pisqrt-taulogtau+pitexterfcleft[frac-sqrtlogtausqrt2right]left(1+logtauright)2sqrt2pi$ and using a Taylor expansion, we finally obtain :
$F(tau)sim_0 sqrtfrac-1logtaufracleft(3+2logtauleft(1+logtauright)right)tau2left(-logtauright)^frac52+Oleft(tau^2right)$
Do you agree with the following ?
real-analysis limits taylor-expansion special-functions
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I am looking for the asymptotic expansion of the following expression as $taurightarrow0$ :
$F(tau) = int_0^taue^-rumathcalNleft(fraclogleft(fracbarxleft(tau-uright)x+aright)-mu usigmasqrturight)du$, where :
$r>0, sigma>0, mu>0, a>0, mathcalN$ the c.d.f of a standard normal distribution and $barx(tau)sim_0 (x+a)(1-sigmasqrt-taulntau)$
First, note that :
$F(tau)=tauint_0^1e^-rtau umathcalNleft(fraclogleft(fracbarxleft(tauleft(1-uright)right)x+aright)-mu utausigmasqrttau uright)d u$
Now, let v:=1-u and :
$logleft(fracbarxleft(vtauright)x+aright) =logleft(fracx+aleft(1-sigmasqrt-tau vlogtau vright)x+a+oleft(-sqrt-tau vlogtau vright)right)
=-sigmasqrt-tau vlogtau v+oleft(sqrt-tau vlogtau vright)$
Hence :
$fraclogleft(fracbarxleft(tau vright)x+aright)-mu utausigmasqrttau u=-sqrt-fracvulogtau v+oleft(-sqrt-fracvulogtau vright)=-sqrt-fracvulogtau+oleft(-sqrt-logtauright)$
Now, recall that one has :
$mathcalNleft(xright)underset-inftysim-expleft(-fracx^22right)frac1sqrt2pix$
Finally :
$Fleft(tauright)=tauint_0^1left(1-rtau u+oleft(tau uright)right)fracexpleft[frac1-u2uleft(logleft(tauright)+oleft(logleft(tauright)right)right)right]sqrt2pileft(-sqrt-fracvulogtau+oleft(-sqrt-logtauright)right)du$
$F(tau)=tauint_0^1fracexpleft[frac1-u2uleft(logleft(tauright)+oleft(logleft(tauright)right)right)right]sqrt2pileft(-sqrt-fracvulogtau+oleft(-sqrt-logtauright)right)du+Oleft(tau^2right)$
Computing the integral yields :
$sqrt-fractaulogtaufracsqrt2pisqrt-taulogtau+pitexterfcleft[frac-sqrtlogtausqrt2right]left(1+logtauright)2sqrt2pi$ and using a Taylor expansion, we finally obtain :
$F(tau)sim_0 sqrtfrac-1logtaufracleft(3+2logtauleft(1+logtauright)right)tau2left(-logtauright)^frac52+Oleft(tau^2right)$
Do you agree with the following ?
real-analysis limits taylor-expansion special-functions
I am looking for the asymptotic expansion of the following expression as $taurightarrow0$ :
$F(tau) = int_0^taue^-rumathcalNleft(fraclogleft(fracbarxleft(tau-uright)x+aright)-mu usigmasqrturight)du$, where :
$r>0, sigma>0, mu>0, a>0, mathcalN$ the c.d.f of a standard normal distribution and $barx(tau)sim_0 (x+a)(1-sigmasqrt-taulntau)$
First, note that :
$F(tau)=tauint_0^1e^-rtau umathcalNleft(fraclogleft(fracbarxleft(tauleft(1-uright)right)x+aright)-mu utausigmasqrttau uright)d u$
Now, let v:=1-u and :
$logleft(fracbarxleft(vtauright)x+aright) =logleft(fracx+aleft(1-sigmasqrt-tau vlogtau vright)x+a+oleft(-sqrt-tau vlogtau vright)right)
=-sigmasqrt-tau vlogtau v+oleft(sqrt-tau vlogtau vright)$
Hence :
$fraclogleft(fracbarxleft(tau vright)x+aright)-mu utausigmasqrttau u=-sqrt-fracvulogtau v+oleft(-sqrt-fracvulogtau vright)=-sqrt-fracvulogtau+oleft(-sqrt-logtauright)$
Now, recall that one has :
$mathcalNleft(xright)underset-inftysim-expleft(-fracx^22right)frac1sqrt2pix$
Finally :
$Fleft(tauright)=tauint_0^1left(1-rtau u+oleft(tau uright)right)fracexpleft[frac1-u2uleft(logleft(tauright)+oleft(logleft(tauright)right)right)right]sqrt2pileft(-sqrt-fracvulogtau+oleft(-sqrt-logtauright)right)du$
$F(tau)=tauint_0^1fracexpleft[frac1-u2uleft(logleft(tauright)+oleft(logleft(tauright)right)right)right]sqrt2pileft(-sqrt-fracvulogtau+oleft(-sqrt-logtauright)right)du+Oleft(tau^2right)$
Computing the integral yields :
$sqrt-fractaulogtaufracsqrt2pisqrt-taulogtau+pitexterfcleft[frac-sqrtlogtausqrt2right]left(1+logtauright)2sqrt2pi$ and using a Taylor expansion, we finally obtain :
$F(tau)sim_0 sqrtfrac-1logtaufracleft(3+2logtauleft(1+logtauright)right)tau2left(-logtauright)^frac52+Oleft(tau^2right)$
Do you agree with the following ?
real-analysis limits taylor-expansion special-functions
asked Jul 18 at 11:20
flo3299
164
164
add a comment |Â
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2855487%2fasymptotic-expansion-of-integral-with-standard-normal-distribution-cdf%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password