finite sequences
Clash Royale CLAN TAG#URR8PPP
up vote
-2
down vote
favorite
If $ x_1,x_2,cdots x_n $ are $n$ non-zero real numbers such that $(x_1^2+x_2^2+cdots+x_n-1^2)(x_2^2+x_3^2+cdots+x_n^2)le(x_1x_2+x_2x_3+cdots+x_n-1x_n)^2$ then show that $ x_1,x_2,cdots,x_n$ are in G.P
Please give some hints so,that I can solve it
sequences-and-series
add a comment |Â
up vote
-2
down vote
favorite
If $ x_1,x_2,cdots x_n $ are $n$ non-zero real numbers such that $(x_1^2+x_2^2+cdots+x_n-1^2)(x_2^2+x_3^2+cdots+x_n^2)le(x_1x_2+x_2x_3+cdots+x_n-1x_n)^2$ then show that $ x_1,x_2,cdots,x_n$ are in G.P
Please give some hints so,that I can solve it
sequences-and-series
What is G.P?...
â Mostafa Ayaz
Jul 18 at 15:42
en.m.wikipedia.org/wiki/Geometric_progression
â Apurv
Jul 18 at 15:43
Use the Cauchy-Schwarz inequality.
â Somos
Jul 18 at 17:03
add a comment |Â
up vote
-2
down vote
favorite
up vote
-2
down vote
favorite
If $ x_1,x_2,cdots x_n $ are $n$ non-zero real numbers such that $(x_1^2+x_2^2+cdots+x_n-1^2)(x_2^2+x_3^2+cdots+x_n^2)le(x_1x_2+x_2x_3+cdots+x_n-1x_n)^2$ then show that $ x_1,x_2,cdots,x_n$ are in G.P
Please give some hints so,that I can solve it
sequences-and-series
If $ x_1,x_2,cdots x_n $ are $n$ non-zero real numbers such that $(x_1^2+x_2^2+cdots+x_n-1^2)(x_2^2+x_3^2+cdots+x_n^2)le(x_1x_2+x_2x_3+cdots+x_n-1x_n)^2$ then show that $ x_1,x_2,cdots,x_n$ are in G.P
Please give some hints so,that I can solve it
sequences-and-series
asked Jul 18 at 15:39
Apurv
324
324
What is G.P?...
â Mostafa Ayaz
Jul 18 at 15:42
en.m.wikipedia.org/wiki/Geometric_progression
â Apurv
Jul 18 at 15:43
Use the Cauchy-Schwarz inequality.
â Somos
Jul 18 at 17:03
add a comment |Â
What is G.P?...
â Mostafa Ayaz
Jul 18 at 15:42
en.m.wikipedia.org/wiki/Geometric_progression
â Apurv
Jul 18 at 15:43
Use the Cauchy-Schwarz inequality.
â Somos
Jul 18 at 17:03
What is G.P?...
â Mostafa Ayaz
Jul 18 at 15:42
What is G.P?...
â Mostafa Ayaz
Jul 18 at 15:42
en.m.wikipedia.org/wiki/Geometric_progression
â Apurv
Jul 18 at 15:43
en.m.wikipedia.org/wiki/Geometric_progression
â Apurv
Jul 18 at 15:43
Use the Cauchy-Schwarz inequality.
â Somos
Jul 18 at 17:03
Use the Cauchy-Schwarz inequality.
â Somos
Jul 18 at 17:03
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2855699%2ffinite-sequences%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
What is G.P?...
â Mostafa Ayaz
Jul 18 at 15:42
en.m.wikipedia.org/wiki/Geometric_progression
â Apurv
Jul 18 at 15:43
Use the Cauchy-Schwarz inequality.
â Somos
Jul 18 at 17:03