Inverse of a circulant matrix with a specific pattern
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
I'm trying to invert the following circulant matrix:
$$beginbmatrix1 & -1/4 & 0&0 &0&cdots&0&-1/4\ -1/4 & 1 & -1/4 & 0&0&cdots&0&0\0 & -1/4 & 1 & -1/4&0&cdots&0&0\vdots&vdots&vdots&vdots&vdots&ddots&vdots&vdots
\-1/4 & 0 & 0 & 0 & 0&cdots&-1/4 & 1 endbmatrix$$
As it turns out, Fuyong (2011) "The inverse of circulant matrix" proposes the following method:
1-) Find the roots of the polynomials $g(z)=g^prime(z)=1 - frac14z- frac14z^-1$ that are inside the unit circle:
$z_1 = z_1^prime= 2-sqrt3$ and $z_2 = z_2^prime= 2+sqrt3$
Only $z_1$ and $z_1^prime$ are inside the unit circle.
2-) Compute $g_1(z_1)=-frac14z_1^-1(z_1-z_2)$ and $g_1^prime(z^prime_1)=-frac14z_1^prime-1(z_1^prime-z_2^prime)$:
$g_1(z_1)=g_1^prime(z^prime_1)= fracsqrt32(2-sqrt3)$
3-) The elements of the inverse are given by:
$b_k= dfracz_1^k_1g_1(z_1)(1-z_1^n) +
dfracz_1^prime k_2z_1^prime sg_1^prime(z^prime_1)(1-z_1^prime n) $ , $k=0,ldots,n-1$
where:
$k_1 = mathrmmod,e (k-1,n) $
$k_2 = mathrmmod,e (n-k-1+s,n) $
I don't know how $s$ is determined and what the operator $mathrmmod,e$ does. Can anyone help?
linear-algebra matrices inverse circulant-matrices
add a comment |Â
up vote
1
down vote
favorite
I'm trying to invert the following circulant matrix:
$$beginbmatrix1 & -1/4 & 0&0 &0&cdots&0&-1/4\ -1/4 & 1 & -1/4 & 0&0&cdots&0&0\0 & -1/4 & 1 & -1/4&0&cdots&0&0\vdots&vdots&vdots&vdots&vdots&ddots&vdots&vdots
\-1/4 & 0 & 0 & 0 & 0&cdots&-1/4 & 1 endbmatrix$$
As it turns out, Fuyong (2011) "The inverse of circulant matrix" proposes the following method:
1-) Find the roots of the polynomials $g(z)=g^prime(z)=1 - frac14z- frac14z^-1$ that are inside the unit circle:
$z_1 = z_1^prime= 2-sqrt3$ and $z_2 = z_2^prime= 2+sqrt3$
Only $z_1$ and $z_1^prime$ are inside the unit circle.
2-) Compute $g_1(z_1)=-frac14z_1^-1(z_1-z_2)$ and $g_1^prime(z^prime_1)=-frac14z_1^prime-1(z_1^prime-z_2^prime)$:
$g_1(z_1)=g_1^prime(z^prime_1)= fracsqrt32(2-sqrt3)$
3-) The elements of the inverse are given by:
$b_k= dfracz_1^k_1g_1(z_1)(1-z_1^n) +
dfracz_1^prime k_2z_1^prime sg_1^prime(z^prime_1)(1-z_1^prime n) $ , $k=0,ldots,n-1$
where:
$k_1 = mathrmmod,e (k-1,n) $
$k_2 = mathrmmod,e (n-k-1+s,n) $
I don't know how $s$ is determined and what the operator $mathrmmod,e$ does. Can anyone help?
linear-algebra matrices inverse circulant-matrices
Do you just want to invert a circulant matrix or you want to solve matrix equation of the form $Cx=b$, where $C$ is your circulant matrix? For the latter, you can use the FFT to do it very fast.
â pedroszattoni
Jul 22 at 15:52
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I'm trying to invert the following circulant matrix:
$$beginbmatrix1 & -1/4 & 0&0 &0&cdots&0&-1/4\ -1/4 & 1 & -1/4 & 0&0&cdots&0&0\0 & -1/4 & 1 & -1/4&0&cdots&0&0\vdots&vdots&vdots&vdots&vdots&ddots&vdots&vdots
\-1/4 & 0 & 0 & 0 & 0&cdots&-1/4 & 1 endbmatrix$$
As it turns out, Fuyong (2011) "The inverse of circulant matrix" proposes the following method:
1-) Find the roots of the polynomials $g(z)=g^prime(z)=1 - frac14z- frac14z^-1$ that are inside the unit circle:
$z_1 = z_1^prime= 2-sqrt3$ and $z_2 = z_2^prime= 2+sqrt3$
Only $z_1$ and $z_1^prime$ are inside the unit circle.
2-) Compute $g_1(z_1)=-frac14z_1^-1(z_1-z_2)$ and $g_1^prime(z^prime_1)=-frac14z_1^prime-1(z_1^prime-z_2^prime)$:
$g_1(z_1)=g_1^prime(z^prime_1)= fracsqrt32(2-sqrt3)$
3-) The elements of the inverse are given by:
$b_k= dfracz_1^k_1g_1(z_1)(1-z_1^n) +
dfracz_1^prime k_2z_1^prime sg_1^prime(z^prime_1)(1-z_1^prime n) $ , $k=0,ldots,n-1$
where:
$k_1 = mathrmmod,e (k-1,n) $
$k_2 = mathrmmod,e (n-k-1+s,n) $
I don't know how $s$ is determined and what the operator $mathrmmod,e$ does. Can anyone help?
linear-algebra matrices inverse circulant-matrices
I'm trying to invert the following circulant matrix:
$$beginbmatrix1 & -1/4 & 0&0 &0&cdots&0&-1/4\ -1/4 & 1 & -1/4 & 0&0&cdots&0&0\0 & -1/4 & 1 & -1/4&0&cdots&0&0\vdots&vdots&vdots&vdots&vdots&ddots&vdots&vdots
\-1/4 & 0 & 0 & 0 & 0&cdots&-1/4 & 1 endbmatrix$$
As it turns out, Fuyong (2011) "The inverse of circulant matrix" proposes the following method:
1-) Find the roots of the polynomials $g(z)=g^prime(z)=1 - frac14z- frac14z^-1$ that are inside the unit circle:
$z_1 = z_1^prime= 2-sqrt3$ and $z_2 = z_2^prime= 2+sqrt3$
Only $z_1$ and $z_1^prime$ are inside the unit circle.
2-) Compute $g_1(z_1)=-frac14z_1^-1(z_1-z_2)$ and $g_1^prime(z^prime_1)=-frac14z_1^prime-1(z_1^prime-z_2^prime)$:
$g_1(z_1)=g_1^prime(z^prime_1)= fracsqrt32(2-sqrt3)$
3-) The elements of the inverse are given by:
$b_k= dfracz_1^k_1g_1(z_1)(1-z_1^n) +
dfracz_1^prime k_2z_1^prime sg_1^prime(z^prime_1)(1-z_1^prime n) $ , $k=0,ldots,n-1$
where:
$k_1 = mathrmmod,e (k-1,n) $
$k_2 = mathrmmod,e (n-k-1+s,n) $
I don't know how $s$ is determined and what the operator $mathrmmod,e$ does. Can anyone help?
linear-algebra matrices inverse circulant-matrices
edited Jul 19 at 5:28
Rodrigo de Azevedo
12.6k41751
12.6k41751
asked Jul 18 at 10:10
capadocia
204
204
Do you just want to invert a circulant matrix or you want to solve matrix equation of the form $Cx=b$, where $C$ is your circulant matrix? For the latter, you can use the FFT to do it very fast.
â pedroszattoni
Jul 22 at 15:52
add a comment |Â
Do you just want to invert a circulant matrix or you want to solve matrix equation of the form $Cx=b$, where $C$ is your circulant matrix? For the latter, you can use the FFT to do it very fast.
â pedroszattoni
Jul 22 at 15:52
Do you just want to invert a circulant matrix or you want to solve matrix equation of the form $Cx=b$, where $C$ is your circulant matrix? For the latter, you can use the FFT to do it very fast.
â pedroszattoni
Jul 22 at 15:52
Do you just want to invert a circulant matrix or you want to solve matrix equation of the form $Cx=b$, where $C$ is your circulant matrix? For the latter, you can use the FFT to do it very fast.
â pedroszattoni
Jul 22 at 15:52
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
0
down vote
accepted
The polynomial $g$ is defined as $g(z) = a_0 + a_1 z + cdots + a_s x^s$. Thus, $s=-1$.
Let $B=A^-1$:
beginalign*
&B= beginbmatrixb_0 & b_1 & b_2&b_3 &b_4&cdots &b_n-2&b_n-1\ b_n-1 & b_0 & b_1 & b_2&b_3&cdots & b_n-3&b_n-2\b_n-2 & b_n-1 & b_0 & b_1&b_2&cdots&b_n-4&b_n-3\vdots&vdots&vdots&vdots&vdots&ddots&vdots&vdots
\b_1 & b_2 & b_3 & b_4 & b_5 &cdots&b_n-1 & b_0 endbmatrix&
endalign*
beginalign*
b_k = dfrac2bigl(2-sqrt3bigr)^ksqrt3bigl[1-bigl(2-sqrt3bigr)^nbigr] + dfrac2bigl(2-sqrt3bigr)^n-ksqrt3bigl[1-bigl(2-sqrt3bigr)^nbigr]qquad k = 0,ldots, n-1
endalign*
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
The polynomial $g$ is defined as $g(z) = a_0 + a_1 z + cdots + a_s x^s$. Thus, $s=-1$.
Let $B=A^-1$:
beginalign*
&B= beginbmatrixb_0 & b_1 & b_2&b_3 &b_4&cdots &b_n-2&b_n-1\ b_n-1 & b_0 & b_1 & b_2&b_3&cdots & b_n-3&b_n-2\b_n-2 & b_n-1 & b_0 & b_1&b_2&cdots&b_n-4&b_n-3\vdots&vdots&vdots&vdots&vdots&ddots&vdots&vdots
\b_1 & b_2 & b_3 & b_4 & b_5 &cdots&b_n-1 & b_0 endbmatrix&
endalign*
beginalign*
b_k = dfrac2bigl(2-sqrt3bigr)^ksqrt3bigl[1-bigl(2-sqrt3bigr)^nbigr] + dfrac2bigl(2-sqrt3bigr)^n-ksqrt3bigl[1-bigl(2-sqrt3bigr)^nbigr]qquad k = 0,ldots, n-1
endalign*
add a comment |Â
up vote
0
down vote
accepted
The polynomial $g$ is defined as $g(z) = a_0 + a_1 z + cdots + a_s x^s$. Thus, $s=-1$.
Let $B=A^-1$:
beginalign*
&B= beginbmatrixb_0 & b_1 & b_2&b_3 &b_4&cdots &b_n-2&b_n-1\ b_n-1 & b_0 & b_1 & b_2&b_3&cdots & b_n-3&b_n-2\b_n-2 & b_n-1 & b_0 & b_1&b_2&cdots&b_n-4&b_n-3\vdots&vdots&vdots&vdots&vdots&ddots&vdots&vdots
\b_1 & b_2 & b_3 & b_4 & b_5 &cdots&b_n-1 & b_0 endbmatrix&
endalign*
beginalign*
b_k = dfrac2bigl(2-sqrt3bigr)^ksqrt3bigl[1-bigl(2-sqrt3bigr)^nbigr] + dfrac2bigl(2-sqrt3bigr)^n-ksqrt3bigl[1-bigl(2-sqrt3bigr)^nbigr]qquad k = 0,ldots, n-1
endalign*
add a comment |Â
up vote
0
down vote
accepted
up vote
0
down vote
accepted
The polynomial $g$ is defined as $g(z) = a_0 + a_1 z + cdots + a_s x^s$. Thus, $s=-1$.
Let $B=A^-1$:
beginalign*
&B= beginbmatrixb_0 & b_1 & b_2&b_3 &b_4&cdots &b_n-2&b_n-1\ b_n-1 & b_0 & b_1 & b_2&b_3&cdots & b_n-3&b_n-2\b_n-2 & b_n-1 & b_0 & b_1&b_2&cdots&b_n-4&b_n-3\vdots&vdots&vdots&vdots&vdots&ddots&vdots&vdots
\b_1 & b_2 & b_3 & b_4 & b_5 &cdots&b_n-1 & b_0 endbmatrix&
endalign*
beginalign*
b_k = dfrac2bigl(2-sqrt3bigr)^ksqrt3bigl[1-bigl(2-sqrt3bigr)^nbigr] + dfrac2bigl(2-sqrt3bigr)^n-ksqrt3bigl[1-bigl(2-sqrt3bigr)^nbigr]qquad k = 0,ldots, n-1
endalign*
The polynomial $g$ is defined as $g(z) = a_0 + a_1 z + cdots + a_s x^s$. Thus, $s=-1$.
Let $B=A^-1$:
beginalign*
&B= beginbmatrixb_0 & b_1 & b_2&b_3 &b_4&cdots &b_n-2&b_n-1\ b_n-1 & b_0 & b_1 & b_2&b_3&cdots & b_n-3&b_n-2\b_n-2 & b_n-1 & b_0 & b_1&b_2&cdots&b_n-4&b_n-3\vdots&vdots&vdots&vdots&vdots&ddots&vdots&vdots
\b_1 & b_2 & b_3 & b_4 & b_5 &cdots&b_n-1 & b_0 endbmatrix&
endalign*
beginalign*
b_k = dfrac2bigl(2-sqrt3bigr)^ksqrt3bigl[1-bigl(2-sqrt3bigr)^nbigr] + dfrac2bigl(2-sqrt3bigr)^n-ksqrt3bigl[1-bigl(2-sqrt3bigr)^nbigr]qquad k = 0,ldots, n-1
endalign*
answered Jul 23 at 18:10
capadocia
204
204
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2855429%2finverse-of-a-circulant-matrix-with-a-specific-pattern%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Do you just want to invert a circulant matrix or you want to solve matrix equation of the form $Cx=b$, where $C$ is your circulant matrix? For the latter, you can use the FFT to do it very fast.
â pedroszattoni
Jul 22 at 15:52