Inverse of a circulant matrix with a specific pattern

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












I'm trying to invert the following circulant matrix:



$$beginbmatrix1 & -1/4 & 0&0 &0&cdots&0&-1/4\ -1/4 & 1 & -1/4 & 0&0&cdots&0&0\0 & -1/4 & 1 & -1/4&0&cdots&0&0\vdots&vdots&vdots&vdots&vdots&ddots&vdots&vdots
\-1/4 & 0 & 0 & 0 & 0&cdots&-1/4 & 1 endbmatrix$$



As it turns out, Fuyong (2011) "The inverse of circulant matrix" proposes the following method:



1-) Find the roots of the polynomials $g(z)=g^prime(z)=1 - frac14z- frac14z^-1$ that are inside the unit circle:



$z_1 = z_1^prime= 2-sqrt3$ and $z_2 = z_2^prime= 2+sqrt3$



Only $z_1$ and $z_1^prime$ are inside the unit circle.



2-) Compute $g_1(z_1)=-frac14z_1^-1(z_1-z_2)$ and $g_1^prime(z^prime_1)=-frac14z_1^prime-1(z_1^prime-z_2^prime)$:



$g_1(z_1)=g_1^prime(z^prime_1)= fracsqrt32(2-sqrt3)$



3-) The elements of the inverse are given by:



$b_k= dfracz_1^k_1g_1(z_1)(1-z_1^n) +
dfracz_1^prime k_2z_1^prime sg_1^prime(z^prime_1)(1-z_1^prime n) $ , $k=0,ldots,n-1$



where:



$k_1 = mathrmmod,e (k-1,n) $



$k_2 = mathrmmod,e (n-k-1+s,n) $



I don't know how $s$ is determined and what the operator $mathrmmod,e$ does. Can anyone help?







share|cite|improve this question





















  • Do you just want to invert a circulant matrix or you want to solve matrix equation of the form $Cx=b$, where $C$ is your circulant matrix? For the latter, you can use the FFT to do it very fast.
    – pedroszattoni
    Jul 22 at 15:52














up vote
1
down vote

favorite












I'm trying to invert the following circulant matrix:



$$beginbmatrix1 & -1/4 & 0&0 &0&cdots&0&-1/4\ -1/4 & 1 & -1/4 & 0&0&cdots&0&0\0 & -1/4 & 1 & -1/4&0&cdots&0&0\vdots&vdots&vdots&vdots&vdots&ddots&vdots&vdots
\-1/4 & 0 & 0 & 0 & 0&cdots&-1/4 & 1 endbmatrix$$



As it turns out, Fuyong (2011) "The inverse of circulant matrix" proposes the following method:



1-) Find the roots of the polynomials $g(z)=g^prime(z)=1 - frac14z- frac14z^-1$ that are inside the unit circle:



$z_1 = z_1^prime= 2-sqrt3$ and $z_2 = z_2^prime= 2+sqrt3$



Only $z_1$ and $z_1^prime$ are inside the unit circle.



2-) Compute $g_1(z_1)=-frac14z_1^-1(z_1-z_2)$ and $g_1^prime(z^prime_1)=-frac14z_1^prime-1(z_1^prime-z_2^prime)$:



$g_1(z_1)=g_1^prime(z^prime_1)= fracsqrt32(2-sqrt3)$



3-) The elements of the inverse are given by:



$b_k= dfracz_1^k_1g_1(z_1)(1-z_1^n) +
dfracz_1^prime k_2z_1^prime sg_1^prime(z^prime_1)(1-z_1^prime n) $ , $k=0,ldots,n-1$



where:



$k_1 = mathrmmod,e (k-1,n) $



$k_2 = mathrmmod,e (n-k-1+s,n) $



I don't know how $s$ is determined and what the operator $mathrmmod,e$ does. Can anyone help?







share|cite|improve this question





















  • Do you just want to invert a circulant matrix or you want to solve matrix equation of the form $Cx=b$, where $C$ is your circulant matrix? For the latter, you can use the FFT to do it very fast.
    – pedroszattoni
    Jul 22 at 15:52












up vote
1
down vote

favorite









up vote
1
down vote

favorite











I'm trying to invert the following circulant matrix:



$$beginbmatrix1 & -1/4 & 0&0 &0&cdots&0&-1/4\ -1/4 & 1 & -1/4 & 0&0&cdots&0&0\0 & -1/4 & 1 & -1/4&0&cdots&0&0\vdots&vdots&vdots&vdots&vdots&ddots&vdots&vdots
\-1/4 & 0 & 0 & 0 & 0&cdots&-1/4 & 1 endbmatrix$$



As it turns out, Fuyong (2011) "The inverse of circulant matrix" proposes the following method:



1-) Find the roots of the polynomials $g(z)=g^prime(z)=1 - frac14z- frac14z^-1$ that are inside the unit circle:



$z_1 = z_1^prime= 2-sqrt3$ and $z_2 = z_2^prime= 2+sqrt3$



Only $z_1$ and $z_1^prime$ are inside the unit circle.



2-) Compute $g_1(z_1)=-frac14z_1^-1(z_1-z_2)$ and $g_1^prime(z^prime_1)=-frac14z_1^prime-1(z_1^prime-z_2^prime)$:



$g_1(z_1)=g_1^prime(z^prime_1)= fracsqrt32(2-sqrt3)$



3-) The elements of the inverse are given by:



$b_k= dfracz_1^k_1g_1(z_1)(1-z_1^n) +
dfracz_1^prime k_2z_1^prime sg_1^prime(z^prime_1)(1-z_1^prime n) $ , $k=0,ldots,n-1$



where:



$k_1 = mathrmmod,e (k-1,n) $



$k_2 = mathrmmod,e (n-k-1+s,n) $



I don't know how $s$ is determined and what the operator $mathrmmod,e$ does. Can anyone help?







share|cite|improve this question













I'm trying to invert the following circulant matrix:



$$beginbmatrix1 & -1/4 & 0&0 &0&cdots&0&-1/4\ -1/4 & 1 & -1/4 & 0&0&cdots&0&0\0 & -1/4 & 1 & -1/4&0&cdots&0&0\vdots&vdots&vdots&vdots&vdots&ddots&vdots&vdots
\-1/4 & 0 & 0 & 0 & 0&cdots&-1/4 & 1 endbmatrix$$



As it turns out, Fuyong (2011) "The inverse of circulant matrix" proposes the following method:



1-) Find the roots of the polynomials $g(z)=g^prime(z)=1 - frac14z- frac14z^-1$ that are inside the unit circle:



$z_1 = z_1^prime= 2-sqrt3$ and $z_2 = z_2^prime= 2+sqrt3$



Only $z_1$ and $z_1^prime$ are inside the unit circle.



2-) Compute $g_1(z_1)=-frac14z_1^-1(z_1-z_2)$ and $g_1^prime(z^prime_1)=-frac14z_1^prime-1(z_1^prime-z_2^prime)$:



$g_1(z_1)=g_1^prime(z^prime_1)= fracsqrt32(2-sqrt3)$



3-) The elements of the inverse are given by:



$b_k= dfracz_1^k_1g_1(z_1)(1-z_1^n) +
dfracz_1^prime k_2z_1^prime sg_1^prime(z^prime_1)(1-z_1^prime n) $ , $k=0,ldots,n-1$



where:



$k_1 = mathrmmod,e (k-1,n) $



$k_2 = mathrmmod,e (n-k-1+s,n) $



I don't know how $s$ is determined and what the operator $mathrmmod,e$ does. Can anyone help?









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 19 at 5:28









Rodrigo de Azevedo

12.6k41751




12.6k41751









asked Jul 18 at 10:10









capadocia

204




204











  • Do you just want to invert a circulant matrix or you want to solve matrix equation of the form $Cx=b$, where $C$ is your circulant matrix? For the latter, you can use the FFT to do it very fast.
    – pedroszattoni
    Jul 22 at 15:52
















  • Do you just want to invert a circulant matrix or you want to solve matrix equation of the form $Cx=b$, where $C$ is your circulant matrix? For the latter, you can use the FFT to do it very fast.
    – pedroszattoni
    Jul 22 at 15:52















Do you just want to invert a circulant matrix or you want to solve matrix equation of the form $Cx=b$, where $C$ is your circulant matrix? For the latter, you can use the FFT to do it very fast.
– pedroszattoni
Jul 22 at 15:52




Do you just want to invert a circulant matrix or you want to solve matrix equation of the form $Cx=b$, where $C$ is your circulant matrix? For the latter, you can use the FFT to do it very fast.
– pedroszattoni
Jul 22 at 15:52










1 Answer
1






active

oldest

votes

















up vote
0
down vote



accepted










The polynomial $g$ is defined as $g(z) = a_0 + a_1 z + cdots + a_s x^s$. Thus, $s=-1$.



Let $B=A^-1$:



beginalign*
&B= beginbmatrixb_0 & b_1 & b_2&b_3 &b_4&cdots &b_n-2&b_n-1\ b_n-1 & b_0 & b_1 & b_2&b_3&cdots & b_n-3&b_n-2\b_n-2 & b_n-1 & b_0 & b_1&b_2&cdots&b_n-4&b_n-3\vdots&vdots&vdots&vdots&vdots&ddots&vdots&vdots
\b_1 & b_2 & b_3 & b_4 & b_5 &cdots&b_n-1 & b_0 endbmatrix&
endalign*



beginalign*
b_k = dfrac2bigl(2-sqrt3bigr)^ksqrt3bigl[1-bigl(2-sqrt3bigr)^nbigr] + dfrac2bigl(2-sqrt3bigr)^n-ksqrt3bigl[1-bigl(2-sqrt3bigr)^nbigr]qquad k = 0,ldots, n-1
endalign*






share|cite|improve this answer





















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2855429%2finverse-of-a-circulant-matrix-with-a-specific-pattern%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote



    accepted










    The polynomial $g$ is defined as $g(z) = a_0 + a_1 z + cdots + a_s x^s$. Thus, $s=-1$.



    Let $B=A^-1$:



    beginalign*
    &B= beginbmatrixb_0 & b_1 & b_2&b_3 &b_4&cdots &b_n-2&b_n-1\ b_n-1 & b_0 & b_1 & b_2&b_3&cdots & b_n-3&b_n-2\b_n-2 & b_n-1 & b_0 & b_1&b_2&cdots&b_n-4&b_n-3\vdots&vdots&vdots&vdots&vdots&ddots&vdots&vdots
    \b_1 & b_2 & b_3 & b_4 & b_5 &cdots&b_n-1 & b_0 endbmatrix&
    endalign*



    beginalign*
    b_k = dfrac2bigl(2-sqrt3bigr)^ksqrt3bigl[1-bigl(2-sqrt3bigr)^nbigr] + dfrac2bigl(2-sqrt3bigr)^n-ksqrt3bigl[1-bigl(2-sqrt3bigr)^nbigr]qquad k = 0,ldots, n-1
    endalign*






    share|cite|improve this answer

























      up vote
      0
      down vote



      accepted










      The polynomial $g$ is defined as $g(z) = a_0 + a_1 z + cdots + a_s x^s$. Thus, $s=-1$.



      Let $B=A^-1$:



      beginalign*
      &B= beginbmatrixb_0 & b_1 & b_2&b_3 &b_4&cdots &b_n-2&b_n-1\ b_n-1 & b_0 & b_1 & b_2&b_3&cdots & b_n-3&b_n-2\b_n-2 & b_n-1 & b_0 & b_1&b_2&cdots&b_n-4&b_n-3\vdots&vdots&vdots&vdots&vdots&ddots&vdots&vdots
      \b_1 & b_2 & b_3 & b_4 & b_5 &cdots&b_n-1 & b_0 endbmatrix&
      endalign*



      beginalign*
      b_k = dfrac2bigl(2-sqrt3bigr)^ksqrt3bigl[1-bigl(2-sqrt3bigr)^nbigr] + dfrac2bigl(2-sqrt3bigr)^n-ksqrt3bigl[1-bigl(2-sqrt3bigr)^nbigr]qquad k = 0,ldots, n-1
      endalign*






      share|cite|improve this answer























        up vote
        0
        down vote



        accepted







        up vote
        0
        down vote



        accepted






        The polynomial $g$ is defined as $g(z) = a_0 + a_1 z + cdots + a_s x^s$. Thus, $s=-1$.



        Let $B=A^-1$:



        beginalign*
        &B= beginbmatrixb_0 & b_1 & b_2&b_3 &b_4&cdots &b_n-2&b_n-1\ b_n-1 & b_0 & b_1 & b_2&b_3&cdots & b_n-3&b_n-2\b_n-2 & b_n-1 & b_0 & b_1&b_2&cdots&b_n-4&b_n-3\vdots&vdots&vdots&vdots&vdots&ddots&vdots&vdots
        \b_1 & b_2 & b_3 & b_4 & b_5 &cdots&b_n-1 & b_0 endbmatrix&
        endalign*



        beginalign*
        b_k = dfrac2bigl(2-sqrt3bigr)^ksqrt3bigl[1-bigl(2-sqrt3bigr)^nbigr] + dfrac2bigl(2-sqrt3bigr)^n-ksqrt3bigl[1-bigl(2-sqrt3bigr)^nbigr]qquad k = 0,ldots, n-1
        endalign*






        share|cite|improve this answer













        The polynomial $g$ is defined as $g(z) = a_0 + a_1 z + cdots + a_s x^s$. Thus, $s=-1$.



        Let $B=A^-1$:



        beginalign*
        &B= beginbmatrixb_0 & b_1 & b_2&b_3 &b_4&cdots &b_n-2&b_n-1\ b_n-1 & b_0 & b_1 & b_2&b_3&cdots & b_n-3&b_n-2\b_n-2 & b_n-1 & b_0 & b_1&b_2&cdots&b_n-4&b_n-3\vdots&vdots&vdots&vdots&vdots&ddots&vdots&vdots
        \b_1 & b_2 & b_3 & b_4 & b_5 &cdots&b_n-1 & b_0 endbmatrix&
        endalign*



        beginalign*
        b_k = dfrac2bigl(2-sqrt3bigr)^ksqrt3bigl[1-bigl(2-sqrt3bigr)^nbigr] + dfrac2bigl(2-sqrt3bigr)^n-ksqrt3bigl[1-bigl(2-sqrt3bigr)^nbigr]qquad k = 0,ldots, n-1
        endalign*







        share|cite|improve this answer













        share|cite|improve this answer



        share|cite|improve this answer











        answered Jul 23 at 18:10









        capadocia

        204




        204






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2855429%2finverse-of-a-circulant-matrix-with-a-specific-pattern%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            Color the edges and diagonals of a regular polygon

            Relationship between determinant of matrix and determinant of adjoint?

            What is the equation of a 3D cone with generalised tilt?