How to rewrite this nested summation as a single sum?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite
1












$Q$ and $p$ are natural numbers. $E$ equals the $p$-nested sum of products with $p+1$ factors



$$beginalignE&=sum _large k_1=2^Q sum _large k_2=k_1+1^Qldotssum _large k_p-1 =\large k_p-2+1^Qsum _large k_p =\large k_p-1+1^Q a_large k_1-1,1 a_large k_2-1,k_1ldots a_large k_p-1,k_p-1 a_large Q,k_p\\&=sum _large k_1=2^Q-p+1sum _large k_2=k_1+1^Q-p+2ldotssum _large k_p-1 =\large k_p-2+1^Q-1sum _large k_p =\large k_p-1+1^Q a_large k_1-1,1 a_large k_2-1,k_1ldots a_large k_p-1,k_p-1 a_large Q,k_pendalign$$



E.g. when $Q=7$ and $p=4$ the products to be sumed are the $binomQ-1p$ columns
$$beginarrayccccccccccccccc
a_1,1 & a_1,1 & a_1,1 & a_1,1 & a_1,1 & a_1,1 & a_1,1 & a_1,1 & a_1,1 & a_1,1 & a_2,1 & a_2,1 & a_2,1 & a_2,1 & a_3,1 \
a_2,2 & a_2,2 & a_2,2 & a_2,2 & a_2,2 & a_2,2 & a_3,2 & a_3,2 & a_3,2 & a_4,2 & a_3,3 & a_3,3 & a_3,3 & a_4,3 & a_4,4 \
a_3,3 & a_3,3 & a_3,3 & a_4,3 & a_4,3 & a_5,3 & a_4,4 & a_4,4 & a_5,4 & a_5,5 & a_4,4 & a_4,4 & a_5,4 & a_5,5 & a_5,5 \
a_4,4 & a_5,4 & a_6,4 & a_5,5 & a_6,5 & a_6,6 & a_5,5 & a_6,5 & a_6,6 & a_6,6 & a_5,5 & a_6,5 & a_6,6 & a_6,6 & a_6,6 \
a_7,5 & a_7,6 & a_7,7 & a_7,6 & a_7,7 & a_7,7 & a_7,6 & a_7,7 & a_7,7 & a_7,7 & a_7,6 & a_7,7 & a_7,7 & a_7,7 & a_7,7 \
endarray$$



How to define functions $f_1$ and $f_2$ that compute the indices of the $k$'th term's $j$'th factor?

I.e. such that



$$E=sum_k=1^binomQ-1pprod_j=1^p+1a_large f_1(Q,p,k,j),f_2(Q,p,k,j)$$



(that is, the order of terms as well as factors doesn't matter)







share|cite|improve this question

















  • 1




    IMO the original sum is easier to read as $$sum_large 1 = k_0 < k_1 < cdots < k_p < k_p+1 = Q+1; prod_large j=1^p+1 a_k_j - 1, k_j-1$$ Also the question can be simplified by noting that $f_1(Q,p,k,j) = f_2(Q,p,k,j+1)-1$ requiring only the addition of a special case $f_2(Q,p,k,p+2)=Q+1$.
    – Peter Taylor
    Jul 18 at 13:02










  • Replace the k's with their actual values - 2,3,4,...
    – William Elliot
    Jul 18 at 19:50










  • Instead of $f_1$ and $f_2$, you can write a few lines of code to find the NEXT set, based on which factor gets its index increased by $1$.
    – Empy2
    Jul 21 at 0:49















up vote
0
down vote

favorite
1












$Q$ and $p$ are natural numbers. $E$ equals the $p$-nested sum of products with $p+1$ factors



$$beginalignE&=sum _large k_1=2^Q sum _large k_2=k_1+1^Qldotssum _large k_p-1 =\large k_p-2+1^Qsum _large k_p =\large k_p-1+1^Q a_large k_1-1,1 a_large k_2-1,k_1ldots a_large k_p-1,k_p-1 a_large Q,k_p\\&=sum _large k_1=2^Q-p+1sum _large k_2=k_1+1^Q-p+2ldotssum _large k_p-1 =\large k_p-2+1^Q-1sum _large k_p =\large k_p-1+1^Q a_large k_1-1,1 a_large k_2-1,k_1ldots a_large k_p-1,k_p-1 a_large Q,k_pendalign$$



E.g. when $Q=7$ and $p=4$ the products to be sumed are the $binomQ-1p$ columns
$$beginarrayccccccccccccccc
a_1,1 & a_1,1 & a_1,1 & a_1,1 & a_1,1 & a_1,1 & a_1,1 & a_1,1 & a_1,1 & a_1,1 & a_2,1 & a_2,1 & a_2,1 & a_2,1 & a_3,1 \
a_2,2 & a_2,2 & a_2,2 & a_2,2 & a_2,2 & a_2,2 & a_3,2 & a_3,2 & a_3,2 & a_4,2 & a_3,3 & a_3,3 & a_3,3 & a_4,3 & a_4,4 \
a_3,3 & a_3,3 & a_3,3 & a_4,3 & a_4,3 & a_5,3 & a_4,4 & a_4,4 & a_5,4 & a_5,5 & a_4,4 & a_4,4 & a_5,4 & a_5,5 & a_5,5 \
a_4,4 & a_5,4 & a_6,4 & a_5,5 & a_6,5 & a_6,6 & a_5,5 & a_6,5 & a_6,6 & a_6,6 & a_5,5 & a_6,5 & a_6,6 & a_6,6 & a_6,6 \
a_7,5 & a_7,6 & a_7,7 & a_7,6 & a_7,7 & a_7,7 & a_7,6 & a_7,7 & a_7,7 & a_7,7 & a_7,6 & a_7,7 & a_7,7 & a_7,7 & a_7,7 \
endarray$$



How to define functions $f_1$ and $f_2$ that compute the indices of the $k$'th term's $j$'th factor?

I.e. such that



$$E=sum_k=1^binomQ-1pprod_j=1^p+1a_large f_1(Q,p,k,j),f_2(Q,p,k,j)$$



(that is, the order of terms as well as factors doesn't matter)







share|cite|improve this question

















  • 1




    IMO the original sum is easier to read as $$sum_large 1 = k_0 < k_1 < cdots < k_p < k_p+1 = Q+1; prod_large j=1^p+1 a_k_j - 1, k_j-1$$ Also the question can be simplified by noting that $f_1(Q,p,k,j) = f_2(Q,p,k,j+1)-1$ requiring only the addition of a special case $f_2(Q,p,k,p+2)=Q+1$.
    – Peter Taylor
    Jul 18 at 13:02










  • Replace the k's with their actual values - 2,3,4,...
    – William Elliot
    Jul 18 at 19:50










  • Instead of $f_1$ and $f_2$, you can write a few lines of code to find the NEXT set, based on which factor gets its index increased by $1$.
    – Empy2
    Jul 21 at 0:49













up vote
0
down vote

favorite
1









up vote
0
down vote

favorite
1






1





$Q$ and $p$ are natural numbers. $E$ equals the $p$-nested sum of products with $p+1$ factors



$$beginalignE&=sum _large k_1=2^Q sum _large k_2=k_1+1^Qldotssum _large k_p-1 =\large k_p-2+1^Qsum _large k_p =\large k_p-1+1^Q a_large k_1-1,1 a_large k_2-1,k_1ldots a_large k_p-1,k_p-1 a_large Q,k_p\\&=sum _large k_1=2^Q-p+1sum _large k_2=k_1+1^Q-p+2ldotssum _large k_p-1 =\large k_p-2+1^Q-1sum _large k_p =\large k_p-1+1^Q a_large k_1-1,1 a_large k_2-1,k_1ldots a_large k_p-1,k_p-1 a_large Q,k_pendalign$$



E.g. when $Q=7$ and $p=4$ the products to be sumed are the $binomQ-1p$ columns
$$beginarrayccccccccccccccc
a_1,1 & a_1,1 & a_1,1 & a_1,1 & a_1,1 & a_1,1 & a_1,1 & a_1,1 & a_1,1 & a_1,1 & a_2,1 & a_2,1 & a_2,1 & a_2,1 & a_3,1 \
a_2,2 & a_2,2 & a_2,2 & a_2,2 & a_2,2 & a_2,2 & a_3,2 & a_3,2 & a_3,2 & a_4,2 & a_3,3 & a_3,3 & a_3,3 & a_4,3 & a_4,4 \
a_3,3 & a_3,3 & a_3,3 & a_4,3 & a_4,3 & a_5,3 & a_4,4 & a_4,4 & a_5,4 & a_5,5 & a_4,4 & a_4,4 & a_5,4 & a_5,5 & a_5,5 \
a_4,4 & a_5,4 & a_6,4 & a_5,5 & a_6,5 & a_6,6 & a_5,5 & a_6,5 & a_6,6 & a_6,6 & a_5,5 & a_6,5 & a_6,6 & a_6,6 & a_6,6 \
a_7,5 & a_7,6 & a_7,7 & a_7,6 & a_7,7 & a_7,7 & a_7,6 & a_7,7 & a_7,7 & a_7,7 & a_7,6 & a_7,7 & a_7,7 & a_7,7 & a_7,7 \
endarray$$



How to define functions $f_1$ and $f_2$ that compute the indices of the $k$'th term's $j$'th factor?

I.e. such that



$$E=sum_k=1^binomQ-1pprod_j=1^p+1a_large f_1(Q,p,k,j),f_2(Q,p,k,j)$$



(that is, the order of terms as well as factors doesn't matter)







share|cite|improve this question













$Q$ and $p$ are natural numbers. $E$ equals the $p$-nested sum of products with $p+1$ factors



$$beginalignE&=sum _large k_1=2^Q sum _large k_2=k_1+1^Qldotssum _large k_p-1 =\large k_p-2+1^Qsum _large k_p =\large k_p-1+1^Q a_large k_1-1,1 a_large k_2-1,k_1ldots a_large k_p-1,k_p-1 a_large Q,k_p\\&=sum _large k_1=2^Q-p+1sum _large k_2=k_1+1^Q-p+2ldotssum _large k_p-1 =\large k_p-2+1^Q-1sum _large k_p =\large k_p-1+1^Q a_large k_1-1,1 a_large k_2-1,k_1ldots a_large k_p-1,k_p-1 a_large Q,k_pendalign$$



E.g. when $Q=7$ and $p=4$ the products to be sumed are the $binomQ-1p$ columns
$$beginarrayccccccccccccccc
a_1,1 & a_1,1 & a_1,1 & a_1,1 & a_1,1 & a_1,1 & a_1,1 & a_1,1 & a_1,1 & a_1,1 & a_2,1 & a_2,1 & a_2,1 & a_2,1 & a_3,1 \
a_2,2 & a_2,2 & a_2,2 & a_2,2 & a_2,2 & a_2,2 & a_3,2 & a_3,2 & a_3,2 & a_4,2 & a_3,3 & a_3,3 & a_3,3 & a_4,3 & a_4,4 \
a_3,3 & a_3,3 & a_3,3 & a_4,3 & a_4,3 & a_5,3 & a_4,4 & a_4,4 & a_5,4 & a_5,5 & a_4,4 & a_4,4 & a_5,4 & a_5,5 & a_5,5 \
a_4,4 & a_5,4 & a_6,4 & a_5,5 & a_6,5 & a_6,6 & a_5,5 & a_6,5 & a_6,6 & a_6,6 & a_5,5 & a_6,5 & a_6,6 & a_6,6 & a_6,6 \
a_7,5 & a_7,6 & a_7,7 & a_7,6 & a_7,7 & a_7,7 & a_7,6 & a_7,7 & a_7,7 & a_7,7 & a_7,6 & a_7,7 & a_7,7 & a_7,7 & a_7,7 \
endarray$$



How to define functions $f_1$ and $f_2$ that compute the indices of the $k$'th term's $j$'th factor?

I.e. such that



$$E=sum_k=1^binomQ-1pprod_j=1^p+1a_large f_1(Q,p,k,j),f_2(Q,p,k,j)$$



(that is, the order of terms as well as factors doesn't matter)









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 19 at 7:58
























asked Jul 18 at 11:13









MeMyselfI

540216




540216







  • 1




    IMO the original sum is easier to read as $$sum_large 1 = k_0 < k_1 < cdots < k_p < k_p+1 = Q+1; prod_large j=1^p+1 a_k_j - 1, k_j-1$$ Also the question can be simplified by noting that $f_1(Q,p,k,j) = f_2(Q,p,k,j+1)-1$ requiring only the addition of a special case $f_2(Q,p,k,p+2)=Q+1$.
    – Peter Taylor
    Jul 18 at 13:02










  • Replace the k's with their actual values - 2,3,4,...
    – William Elliot
    Jul 18 at 19:50










  • Instead of $f_1$ and $f_2$, you can write a few lines of code to find the NEXT set, based on which factor gets its index increased by $1$.
    – Empy2
    Jul 21 at 0:49













  • 1




    IMO the original sum is easier to read as $$sum_large 1 = k_0 < k_1 < cdots < k_p < k_p+1 = Q+1; prod_large j=1^p+1 a_k_j - 1, k_j-1$$ Also the question can be simplified by noting that $f_1(Q,p,k,j) = f_2(Q,p,k,j+1)-1$ requiring only the addition of a special case $f_2(Q,p,k,p+2)=Q+1$.
    – Peter Taylor
    Jul 18 at 13:02










  • Replace the k's with their actual values - 2,3,4,...
    – William Elliot
    Jul 18 at 19:50










  • Instead of $f_1$ and $f_2$, you can write a few lines of code to find the NEXT set, based on which factor gets its index increased by $1$.
    – Empy2
    Jul 21 at 0:49








1




1




IMO the original sum is easier to read as $$sum_large 1 = k_0 < k_1 < cdots < k_p < k_p+1 = Q+1; prod_large j=1^p+1 a_k_j - 1, k_j-1$$ Also the question can be simplified by noting that $f_1(Q,p,k,j) = f_2(Q,p,k,j+1)-1$ requiring only the addition of a special case $f_2(Q,p,k,p+2)=Q+1$.
– Peter Taylor
Jul 18 at 13:02




IMO the original sum is easier to read as $$sum_large 1 = k_0 < k_1 < cdots < k_p < k_p+1 = Q+1; prod_large j=1^p+1 a_k_j - 1, k_j-1$$ Also the question can be simplified by noting that $f_1(Q,p,k,j) = f_2(Q,p,k,j+1)-1$ requiring only the addition of a special case $f_2(Q,p,k,p+2)=Q+1$.
– Peter Taylor
Jul 18 at 13:02












Replace the k's with their actual values - 2,3,4,...
– William Elliot
Jul 18 at 19:50




Replace the k's with their actual values - 2,3,4,...
– William Elliot
Jul 18 at 19:50












Instead of $f_1$ and $f_2$, you can write a few lines of code to find the NEXT set, based on which factor gets its index increased by $1$.
– Empy2
Jul 21 at 0:49





Instead of $f_1$ and $f_2$, you can write a few lines of code to find the NEXT set, based on which factor gets its index increased by $1$.
– Empy2
Jul 21 at 0:49











1 Answer
1






active

oldest

votes

















up vote
0
down vote













Reading from right to left, the last $a_3,1,a_2,1$ and $a_1,1$ are in columns $1,5,15$ which are $4choose4,5choose4$ and $6choose4$. So you want the inverse function of $$f(n)=nchoose4$$ Within each of those, the second factor comes from similar $nchoose3$ and so on. I wonder how effective is $$g(m)=sqrt[4]4!f(n)+frac32$$
Lookup tables would be effective.






share|cite|improve this answer























    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2855482%2fhow-to-rewrite-this-nested-summation-as-a-single-sum%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote













    Reading from right to left, the last $a_3,1,a_2,1$ and $a_1,1$ are in columns $1,5,15$ which are $4choose4,5choose4$ and $6choose4$. So you want the inverse function of $$f(n)=nchoose4$$ Within each of those, the second factor comes from similar $nchoose3$ and so on. I wonder how effective is $$g(m)=sqrt[4]4!f(n)+frac32$$
    Lookup tables would be effective.






    share|cite|improve this answer



























      up vote
      0
      down vote













      Reading from right to left, the last $a_3,1,a_2,1$ and $a_1,1$ are in columns $1,5,15$ which are $4choose4,5choose4$ and $6choose4$. So you want the inverse function of $$f(n)=nchoose4$$ Within each of those, the second factor comes from similar $nchoose3$ and so on. I wonder how effective is $$g(m)=sqrt[4]4!f(n)+frac32$$
      Lookup tables would be effective.






      share|cite|improve this answer

























        up vote
        0
        down vote










        up vote
        0
        down vote









        Reading from right to left, the last $a_3,1,a_2,1$ and $a_1,1$ are in columns $1,5,15$ which are $4choose4,5choose4$ and $6choose4$. So you want the inverse function of $$f(n)=nchoose4$$ Within each of those, the second factor comes from similar $nchoose3$ and so on. I wonder how effective is $$g(m)=sqrt[4]4!f(n)+frac32$$
        Lookup tables would be effective.






        share|cite|improve this answer















        Reading from right to left, the last $a_3,1,a_2,1$ and $a_1,1$ are in columns $1,5,15$ which are $4choose4,5choose4$ and $6choose4$. So you want the inverse function of $$f(n)=nchoose4$$ Within each of those, the second factor comes from similar $nchoose3$ and so on. I wonder how effective is $$g(m)=sqrt[4]4!f(n)+frac32$$
        Lookup tables would be effective.







        share|cite|improve this answer















        share|cite|improve this answer



        share|cite|improve this answer








        edited Jul 19 at 14:01


























        answered Jul 19 at 13:29









        Empy2

        31.9k12059




        31.9k12059






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2855482%2fhow-to-rewrite-this-nested-summation-as-a-single-sum%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            Color the edges and diagonals of a regular polygon

            Relationship between determinant of matrix and determinant of adjoint?

            What is the equation of a 3D cone with generalised tilt?