What is the identity gained after these manipulations?
Clash Royale CLAN TAG #URR8PPP up vote 0 down vote favorite Background Consider the following divergent integral: $$ int_-infty^infty e^-e^x e^ax x^b dx $$ Where $a$ and $b$ are positive integers such that $b > a$. Multipling $e^-x cdot e^x$ inside the integral. $$ int_-infty^infty e^-e^x e^x e^(a-1)x x^b dx $$ Using integration by parts and noticing $(e^-e^x)' = -e^-e^xe^x $: $$ implies - int_-infty^infty (e^-e^x)' e^(a-1)x x^b dx = - int_-infty^infty e^-e^x (e^(a-1)x x^b)' dx $$ Again multiplying $e^-x cdot e^x$ inside the integral and repeating the process: $$ = - int_-infty^infty e^-e^x e^x cdot e^-x(e^(a-1)x x^b)' dx $$ $$ = int_-infty^infty (e^-e^x)'cdot e^-x(e^(a-1)x x^b)' dx $$ $$ = int_-infty^infty (e^-e^x)cdot (e^-x(e^(a-1)x x^b)')' dx $$ This trick will only work $a$ times. The leading order term in $x$ will be something like: $ a!int_-infty^infty e^-e^x x^b dx $ My idea was to take: $$ lim_n to infty fracint_-n^n e^-e^x e^ax x