If $KâÂÂâÂÂ^d$ is compact and $f:[0,T]ÃKÃKâÂÂâÂÂ$ is continuous with $f(t,;â ;,;â ;)âÂÂC^0+ò$, is $tâ¦left|f(t,;â ;,;â ;)right|_C^0+ò$ continuous?
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
Let
- $T>0$
- $I:=(0,T]$
- $dinmathbb N$
- $Ksubseteqmathbb R^d$ be compact
- $f:overline Itimes Ktimes Ktomathbb R$ be (jointly) continuous
- $betain(0,1]$
Moreover, let $$left|gright|_C^0+beta(K):=sup_x,:y:in:Kleft|g(x,y)right|+sup_stackrelx,:y,:x',:y':in:Kx:ne:x',:y:ne:y'fracg(x,y)-g(x,y')-g(x',y)+g(x',y')rightx-x'$$ for $g:Ktimes Ktomathbb R$ and $$C^0+beta(K):=leftg:Ktimes Ktomathbb Rmidleft.$$ Assume $$f(t,;cdot;,;cdot;)in C^0+beta(K);;;textfor all tinoverline Itag1.$$
Are we able to show that $$overline Ini tmapstoleft|f(t,;cdot;,;cdot;)right|_C^0+beta(K)tag2$$ is continuous?
In general, if $E_i$ is a compact metric space and $h:E_1times E_2tomathbb R$ is (jointly) continuous, then $$E_2ni x_2mapstosup_x_1:in:X_1f(x_1,x_2)tag3$$ is continuous (the crucial argument is the uniform continuity of $h$ implied by the compactness of $E_1times E_2$).
So, the dependence on $t$ of the first term in the definition of $left|f(t,;cdot;,;cdot;)right|_C^0+beta(K)$ is continuous. What's about the second term?
analysis continuity holder-spaces
add a comment |Â
up vote
1
down vote
favorite
Let
- $T>0$
- $I:=(0,T]$
- $dinmathbb N$
- $Ksubseteqmathbb R^d$ be compact
- $f:overline Itimes Ktimes Ktomathbb R$ be (jointly) continuous
- $betain(0,1]$
Moreover, let $$left|gright|_C^0+beta(K):=sup_x,:y:in:Kleft|g(x,y)right|+sup_stackrelx,:y,:x',:y':in:Kx:ne:x',:y:ne:y'fracg(x,y)-g(x,y')-g(x',y)+g(x',y')rightx-x'$$ for $g:Ktimes Ktomathbb R$ and $$C^0+beta(K):=leftg:Ktimes Ktomathbb Rmidleft.$$ Assume $$f(t,;cdot;,;cdot;)in C^0+beta(K);;;textfor all tinoverline Itag1.$$
Are we able to show that $$overline Ini tmapstoleft|f(t,;cdot;,;cdot;)right|_C^0+beta(K)tag2$$ is continuous?
In general, if $E_i$ is a compact metric space and $h:E_1times E_2tomathbb R$ is (jointly) continuous, then $$E_2ni x_2mapstosup_x_1:in:X_1f(x_1,x_2)tag3$$ is continuous (the crucial argument is the uniform continuity of $h$ implied by the compactness of $E_1times E_2$).
So, the dependence on $t$ of the first term in the definition of $left|f(t,;cdot;,;cdot;)right|_C^0+beta(K)$ is continuous. What's about the second term?
analysis continuity holder-spaces
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Let
- $T>0$
- $I:=(0,T]$
- $dinmathbb N$
- $Ksubseteqmathbb R^d$ be compact
- $f:overline Itimes Ktimes Ktomathbb R$ be (jointly) continuous
- $betain(0,1]$
Moreover, let $$left|gright|_C^0+beta(K):=sup_x,:y:in:Kleft|g(x,y)right|+sup_stackrelx,:y,:x',:y':in:Kx:ne:x',:y:ne:y'fracg(x,y)-g(x,y')-g(x',y)+g(x',y')rightx-x'$$ for $g:Ktimes Ktomathbb R$ and $$C^0+beta(K):=leftg:Ktimes Ktomathbb Rmidleft.$$ Assume $$f(t,;cdot;,;cdot;)in C^0+beta(K);;;textfor all tinoverline Itag1.$$
Are we able to show that $$overline Ini tmapstoleft|f(t,;cdot;,;cdot;)right|_C^0+beta(K)tag2$$ is continuous?
In general, if $E_i$ is a compact metric space and $h:E_1times E_2tomathbb R$ is (jointly) continuous, then $$E_2ni x_2mapstosup_x_1:in:X_1f(x_1,x_2)tag3$$ is continuous (the crucial argument is the uniform continuity of $h$ implied by the compactness of $E_1times E_2$).
So, the dependence on $t$ of the first term in the definition of $left|f(t,;cdot;,;cdot;)right|_C^0+beta(K)$ is continuous. What's about the second term?
analysis continuity holder-spaces
Let
- $T>0$
- $I:=(0,T]$
- $dinmathbb N$
- $Ksubseteqmathbb R^d$ be compact
- $f:overline Itimes Ktimes Ktomathbb R$ be (jointly) continuous
- $betain(0,1]$
Moreover, let $$left|gright|_C^0+beta(K):=sup_x,:y:in:Kleft|g(x,y)right|+sup_stackrelx,:y,:x',:y':in:Kx:ne:x',:y:ne:y'fracg(x,y)-g(x,y')-g(x',y)+g(x',y')rightx-x'$$ for $g:Ktimes Ktomathbb R$ and $$C^0+beta(K):=leftg:Ktimes Ktomathbb Rmidleft.$$ Assume $$f(t,;cdot;,;cdot;)in C^0+beta(K);;;textfor all tinoverline Itag1.$$
Are we able to show that $$overline Ini tmapstoleft|f(t,;cdot;,;cdot;)right|_C^0+beta(K)tag2$$ is continuous?
In general, if $E_i$ is a compact metric space and $h:E_1times E_2tomathbb R$ is (jointly) continuous, then $$E_2ni x_2mapstosup_x_1:in:X_1f(x_1,x_2)tag3$$ is continuous (the crucial argument is the uniform continuity of $h$ implied by the compactness of $E_1times E_2$).
So, the dependence on $t$ of the first term in the definition of $left|f(t,;cdot;,;cdot;)right|_C^0+beta(K)$ is continuous. What's about the second term?
analysis continuity holder-spaces
edited Jul 28 at 15:24
asked Jul 28 at 14:04
0xbadf00d
2,02041028
2,02041028
add a comment |Â
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2865271%2fif-k%25e2%258a%2586%25e2%2584%259dd-is-compact-and-f0-t%25c3%2597k%25c3%2597k%25e2%2586%2592%25e2%2584%259d-is-continuous-with-ft-%25e2%258b%2585-%25e2%258b%2585-%25e2%2588%2588c%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password