exercise on double integration
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
I am not sure if i am not understanding the concept of double integration right, or if i am just making a silly mistake, but here is the problem:
given the function $f(x,y)=24xy, y>0, x>0$ and $x+y<=1 $ fint the $E[X,Y]$
$E[X,Y] = int int 24x^2y^2dxdy$ =
$24 int_0^xx^2 (int_0^1-xy^2dy) dx $ =
$24 int_0^xx^2 [fracy^33]_0^1-xdx $=
$24 int_0^xx^2 frac(1-x)^33dx $=
$8 int_0^xx^2 (1-x)^3dx $=
$8[fracx^3x frac(1-x)^44frac-x^22]_0^1$
= $ 8-frac 512$
However, my professor gave us different solution:
$E[X,Y] = int int 24x^2y^2dxdy$ =
$24 int_0^xx^2 (int_0^1-xy^2dy) dx $ =
$3 int_0^1 x^2 (1-x)^3 dx = $
$ frac215$
What is the problem with my calculation?
Where does the 3 come from in $3 int_0^1 x^2 (1-x)^3 dx $ ?
probability integration definite-integrals expectation
add a comment |Â
up vote
1
down vote
favorite
I am not sure if i am not understanding the concept of double integration right, or if i am just making a silly mistake, but here is the problem:
given the function $f(x,y)=24xy, y>0, x>0$ and $x+y<=1 $ fint the $E[X,Y]$
$E[X,Y] = int int 24x^2y^2dxdy$ =
$24 int_0^xx^2 (int_0^1-xy^2dy) dx $ =
$24 int_0^xx^2 [fracy^33]_0^1-xdx $=
$24 int_0^xx^2 frac(1-x)^33dx $=
$8 int_0^xx^2 (1-x)^3dx $=
$8[fracx^3x frac(1-x)^44frac-x^22]_0^1$
= $ 8-frac 512$
However, my professor gave us different solution:
$E[X,Y] = int int 24x^2y^2dxdy$ =
$24 int_0^xx^2 (int_0^1-xy^2dy) dx $ =
$3 int_0^1 x^2 (1-x)^3 dx = $
$ frac215$
What is the problem with my calculation?
Where does the 3 come from in $3 int_0^1 x^2 (1-x)^3 dx $ ?
probability integration definite-integrals expectation
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I am not sure if i am not understanding the concept of double integration right, or if i am just making a silly mistake, but here is the problem:
given the function $f(x,y)=24xy, y>0, x>0$ and $x+y<=1 $ fint the $E[X,Y]$
$E[X,Y] = int int 24x^2y^2dxdy$ =
$24 int_0^xx^2 (int_0^1-xy^2dy) dx $ =
$24 int_0^xx^2 [fracy^33]_0^1-xdx $=
$24 int_0^xx^2 frac(1-x)^33dx $=
$8 int_0^xx^2 (1-x)^3dx $=
$8[fracx^3x frac(1-x)^44frac-x^22]_0^1$
= $ 8-frac 512$
However, my professor gave us different solution:
$E[X,Y] = int int 24x^2y^2dxdy$ =
$24 int_0^xx^2 (int_0^1-xy^2dy) dx $ =
$3 int_0^1 x^2 (1-x)^3 dx = $
$ frac215$
What is the problem with my calculation?
Where does the 3 come from in $3 int_0^1 x^2 (1-x)^3 dx $ ?
probability integration definite-integrals expectation
I am not sure if i am not understanding the concept of double integration right, or if i am just making a silly mistake, but here is the problem:
given the function $f(x,y)=24xy, y>0, x>0$ and $x+y<=1 $ fint the $E[X,Y]$
$E[X,Y] = int int 24x^2y^2dxdy$ =
$24 int_0^xx^2 (int_0^1-xy^2dy) dx $ =
$24 int_0^xx^2 [fracy^33]_0^1-xdx $=
$24 int_0^xx^2 frac(1-x)^33dx $=
$8 int_0^xx^2 (1-x)^3dx $=
$8[fracx^3x frac(1-x)^44frac-x^22]_0^1$
= $ 8-frac 512$
However, my professor gave us different solution:
$E[X,Y] = int int 24x^2y^2dxdy$ =
$24 int_0^xx^2 (int_0^1-xy^2dy) dx $ =
$3 int_0^1 x^2 (1-x)^3 dx = $
$ frac215$
What is the problem with my calculation?
Where does the 3 come from in $3 int_0^1 x^2 (1-x)^3 dx $ ?
probability integration definite-integrals expectation
edited Jul 28 at 9:34
BCLC
6,98421973
6,98421973
asked Jul 28 at 9:19
user1607
608
608
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
I believe you either misread '8' as '3', or there is a typo on your prof's part.
beginalign
E &= int_x=0^x=1int_y=0^y=1-x 24x^2y^2 , dy , dx \
&= 24int_x=0^x=1x^2int_y=0^y=1-x y^2 , dy ,dx \
&= 24int_x=0^x=1x^2left[fracy^33right]_y=0^y=1-x ,dx \
&= 8int_0^1x^2(1-x)^3 ,dx \
&= 8int_0^1x^2(1-x)^3 ,dx \
&= 8int_0^1x^2(1-3x+3x^2-x^3) ,dx \
&= 8int_0^1x^2-3x^3+3x^4-x^5 ,dx \
&= 8left[fracx^33-frac3x^44+frac3x^55-fracx^66right]_0^1\
&= 8left(frac 13-frac34+frac35-frac16right)\
&= 8cdotfrac160 \
&=frac215
endalign
must be a typo. Can you also provide how you solved $int_0^1x^2(1-x)^3dx$ ? I am not getting $frac160 but frac512$
â user1607
Jul 28 at 9:54
@user1607 sure give me a moment
â Karn Watcharasupat
Jul 28 at 9:55
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
I believe you either misread '8' as '3', or there is a typo on your prof's part.
beginalign
E &= int_x=0^x=1int_y=0^y=1-x 24x^2y^2 , dy , dx \
&= 24int_x=0^x=1x^2int_y=0^y=1-x y^2 , dy ,dx \
&= 24int_x=0^x=1x^2left[fracy^33right]_y=0^y=1-x ,dx \
&= 8int_0^1x^2(1-x)^3 ,dx \
&= 8int_0^1x^2(1-x)^3 ,dx \
&= 8int_0^1x^2(1-3x+3x^2-x^3) ,dx \
&= 8int_0^1x^2-3x^3+3x^4-x^5 ,dx \
&= 8left[fracx^33-frac3x^44+frac3x^55-fracx^66right]_0^1\
&= 8left(frac 13-frac34+frac35-frac16right)\
&= 8cdotfrac160 \
&=frac215
endalign
must be a typo. Can you also provide how you solved $int_0^1x^2(1-x)^3dx$ ? I am not getting $frac160 but frac512$
â user1607
Jul 28 at 9:54
@user1607 sure give me a moment
â Karn Watcharasupat
Jul 28 at 9:55
add a comment |Â
up vote
1
down vote
accepted
I believe you either misread '8' as '3', or there is a typo on your prof's part.
beginalign
E &= int_x=0^x=1int_y=0^y=1-x 24x^2y^2 , dy , dx \
&= 24int_x=0^x=1x^2int_y=0^y=1-x y^2 , dy ,dx \
&= 24int_x=0^x=1x^2left[fracy^33right]_y=0^y=1-x ,dx \
&= 8int_0^1x^2(1-x)^3 ,dx \
&= 8int_0^1x^2(1-x)^3 ,dx \
&= 8int_0^1x^2(1-3x+3x^2-x^3) ,dx \
&= 8int_0^1x^2-3x^3+3x^4-x^5 ,dx \
&= 8left[fracx^33-frac3x^44+frac3x^55-fracx^66right]_0^1\
&= 8left(frac 13-frac34+frac35-frac16right)\
&= 8cdotfrac160 \
&=frac215
endalign
must be a typo. Can you also provide how you solved $int_0^1x^2(1-x)^3dx$ ? I am not getting $frac160 but frac512$
â user1607
Jul 28 at 9:54
@user1607 sure give me a moment
â Karn Watcharasupat
Jul 28 at 9:55
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
I believe you either misread '8' as '3', or there is a typo on your prof's part.
beginalign
E &= int_x=0^x=1int_y=0^y=1-x 24x^2y^2 , dy , dx \
&= 24int_x=0^x=1x^2int_y=0^y=1-x y^2 , dy ,dx \
&= 24int_x=0^x=1x^2left[fracy^33right]_y=0^y=1-x ,dx \
&= 8int_0^1x^2(1-x)^3 ,dx \
&= 8int_0^1x^2(1-x)^3 ,dx \
&= 8int_0^1x^2(1-3x+3x^2-x^3) ,dx \
&= 8int_0^1x^2-3x^3+3x^4-x^5 ,dx \
&= 8left[fracx^33-frac3x^44+frac3x^55-fracx^66right]_0^1\
&= 8left(frac 13-frac34+frac35-frac16right)\
&= 8cdotfrac160 \
&=frac215
endalign
I believe you either misread '8' as '3', or there is a typo on your prof's part.
beginalign
E &= int_x=0^x=1int_y=0^y=1-x 24x^2y^2 , dy , dx \
&= 24int_x=0^x=1x^2int_y=0^y=1-x y^2 , dy ,dx \
&= 24int_x=0^x=1x^2left[fracy^33right]_y=0^y=1-x ,dx \
&= 8int_0^1x^2(1-x)^3 ,dx \
&= 8int_0^1x^2(1-x)^3 ,dx \
&= 8int_0^1x^2(1-3x+3x^2-x^3) ,dx \
&= 8int_0^1x^2-3x^3+3x^4-x^5 ,dx \
&= 8left[fracx^33-frac3x^44+frac3x^55-fracx^66right]_0^1\
&= 8left(frac 13-frac34+frac35-frac16right)\
&= 8cdotfrac160 \
&=frac215
endalign
edited Jul 28 at 10:00
answered Jul 28 at 9:39
Karn Watcharasupat
3,7992426
3,7992426
must be a typo. Can you also provide how you solved $int_0^1x^2(1-x)^3dx$ ? I am not getting $frac160 but frac512$
â user1607
Jul 28 at 9:54
@user1607 sure give me a moment
â Karn Watcharasupat
Jul 28 at 9:55
add a comment |Â
must be a typo. Can you also provide how you solved $int_0^1x^2(1-x)^3dx$ ? I am not getting $frac160 but frac512$
â user1607
Jul 28 at 9:54
@user1607 sure give me a moment
â Karn Watcharasupat
Jul 28 at 9:55
must be a typo. Can you also provide how you solved $int_0^1x^2(1-x)^3dx$ ? I am not getting $frac160 but frac512$
â user1607
Jul 28 at 9:54
must be a typo. Can you also provide how you solved $int_0^1x^2(1-x)^3dx$ ? I am not getting $frac160 but frac512$
â user1607
Jul 28 at 9:54
@user1607 sure give me a moment
â Karn Watcharasupat
Jul 28 at 9:55
@user1607 sure give me a moment
â Karn Watcharasupat
Jul 28 at 9:55
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2865126%2fexercise-on-double-integration%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password