exercise on double integration

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












I am not sure if i am not understanding the concept of double integration right, or if i am just making a silly mistake, but here is the problem:



given the function $f(x,y)=24xy, y>0, x>0$ and $x+y<=1 $ fint the $E[X,Y]$



$E[X,Y] = int int 24x^2y^2dxdy$ =



$24 int_0^xx^2 (int_0^1-xy^2dy) dx $ =



$24 int_0^xx^2 [fracy^33]_0^1-xdx $=



$24 int_0^xx^2 frac(1-x)^33dx $=



$8 int_0^xx^2 (1-x)^3dx $=



$8[fracx^3x frac(1-x)^44frac-x^22]_0^1$



= $ 8-frac 512$



However, my professor gave us different solution:



$E[X,Y] = int int 24x^2y^2dxdy$ =



$24 int_0^xx^2 (int_0^1-xy^2dy) dx $ =



$3 int_0^1 x^2 (1-x)^3 dx = $



$ frac215$



What is the problem with my calculation?



Where does the 3 come from in $3 int_0^1 x^2 (1-x)^3 dx $ ?







share|cite|improve this question

























    up vote
    1
    down vote

    favorite












    I am not sure if i am not understanding the concept of double integration right, or if i am just making a silly mistake, but here is the problem:



    given the function $f(x,y)=24xy, y>0, x>0$ and $x+y<=1 $ fint the $E[X,Y]$



    $E[X,Y] = int int 24x^2y^2dxdy$ =



    $24 int_0^xx^2 (int_0^1-xy^2dy) dx $ =



    $24 int_0^xx^2 [fracy^33]_0^1-xdx $=



    $24 int_0^xx^2 frac(1-x)^33dx $=



    $8 int_0^xx^2 (1-x)^3dx $=



    $8[fracx^3x frac(1-x)^44frac-x^22]_0^1$



    = $ 8-frac 512$



    However, my professor gave us different solution:



    $E[X,Y] = int int 24x^2y^2dxdy$ =



    $24 int_0^xx^2 (int_0^1-xy^2dy) dx $ =



    $3 int_0^1 x^2 (1-x)^3 dx = $



    $ frac215$



    What is the problem with my calculation?



    Where does the 3 come from in $3 int_0^1 x^2 (1-x)^3 dx $ ?







    share|cite|improve this question























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      I am not sure if i am not understanding the concept of double integration right, or if i am just making a silly mistake, but here is the problem:



      given the function $f(x,y)=24xy, y>0, x>0$ and $x+y<=1 $ fint the $E[X,Y]$



      $E[X,Y] = int int 24x^2y^2dxdy$ =



      $24 int_0^xx^2 (int_0^1-xy^2dy) dx $ =



      $24 int_0^xx^2 [fracy^33]_0^1-xdx $=



      $24 int_0^xx^2 frac(1-x)^33dx $=



      $8 int_0^xx^2 (1-x)^3dx $=



      $8[fracx^3x frac(1-x)^44frac-x^22]_0^1$



      = $ 8-frac 512$



      However, my professor gave us different solution:



      $E[X,Y] = int int 24x^2y^2dxdy$ =



      $24 int_0^xx^2 (int_0^1-xy^2dy) dx $ =



      $3 int_0^1 x^2 (1-x)^3 dx = $



      $ frac215$



      What is the problem with my calculation?



      Where does the 3 come from in $3 int_0^1 x^2 (1-x)^3 dx $ ?







      share|cite|improve this question













      I am not sure if i am not understanding the concept of double integration right, or if i am just making a silly mistake, but here is the problem:



      given the function $f(x,y)=24xy, y>0, x>0$ and $x+y<=1 $ fint the $E[X,Y]$



      $E[X,Y] = int int 24x^2y^2dxdy$ =



      $24 int_0^xx^2 (int_0^1-xy^2dy) dx $ =



      $24 int_0^xx^2 [fracy^33]_0^1-xdx $=



      $24 int_0^xx^2 frac(1-x)^33dx $=



      $8 int_0^xx^2 (1-x)^3dx $=



      $8[fracx^3x frac(1-x)^44frac-x^22]_0^1$



      = $ 8-frac 512$



      However, my professor gave us different solution:



      $E[X,Y] = int int 24x^2y^2dxdy$ =



      $24 int_0^xx^2 (int_0^1-xy^2dy) dx $ =



      $3 int_0^1 x^2 (1-x)^3 dx = $



      $ frac215$



      What is the problem with my calculation?



      Where does the 3 come from in $3 int_0^1 x^2 (1-x)^3 dx $ ?









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Jul 28 at 9:34









      BCLC

      6,98421973




      6,98421973









      asked Jul 28 at 9:19









      user1607

      608




      608




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          I believe you either misread '8' as '3', or there is a typo on your prof's part.



          beginalign
          E &= int_x=0^x=1int_y=0^y=1-x 24x^2y^2 , dy , dx \
          &= 24int_x=0^x=1x^2int_y=0^y=1-x y^2 , dy ,dx \
          &= 24int_x=0^x=1x^2left[fracy^33right]_y=0^y=1-x ,dx \
          &= 8int_0^1x^2(1-x)^3 ,dx \
          &= 8int_0^1x^2(1-x)^3 ,dx \
          &= 8int_0^1x^2(1-3x+3x^2-x^3) ,dx \
          &= 8int_0^1x^2-3x^3+3x^4-x^5 ,dx \
          &= 8left[fracx^33-frac3x^44+frac3x^55-fracx^66right]_0^1\
          &= 8left(frac 13-frac34+frac35-frac16right)\
          &= 8cdotfrac160 \
          &=frac215
          endalign






          share|cite|improve this answer























          • must be a typo. Can you also provide how you solved $int_0^1x^2(1-x)^3dx$ ? I am not getting $frac160 but frac512$
            – user1607
            Jul 28 at 9:54











          • @user1607 sure give me a moment
            – Karn Watcharasupat
            Jul 28 at 9:55










          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2865126%2fexercise-on-double-integration%23new-answer', 'question_page');

          );

          Post as a guest






























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          1
          down vote



          accepted










          I believe you either misread '8' as '3', or there is a typo on your prof's part.



          beginalign
          E &= int_x=0^x=1int_y=0^y=1-x 24x^2y^2 , dy , dx \
          &= 24int_x=0^x=1x^2int_y=0^y=1-x y^2 , dy ,dx \
          &= 24int_x=0^x=1x^2left[fracy^33right]_y=0^y=1-x ,dx \
          &= 8int_0^1x^2(1-x)^3 ,dx \
          &= 8int_0^1x^2(1-x)^3 ,dx \
          &= 8int_0^1x^2(1-3x+3x^2-x^3) ,dx \
          &= 8int_0^1x^2-3x^3+3x^4-x^5 ,dx \
          &= 8left[fracx^33-frac3x^44+frac3x^55-fracx^66right]_0^1\
          &= 8left(frac 13-frac34+frac35-frac16right)\
          &= 8cdotfrac160 \
          &=frac215
          endalign






          share|cite|improve this answer























          • must be a typo. Can you also provide how you solved $int_0^1x^2(1-x)^3dx$ ? I am not getting $frac160 but frac512$
            – user1607
            Jul 28 at 9:54











          • @user1607 sure give me a moment
            – Karn Watcharasupat
            Jul 28 at 9:55














          up vote
          1
          down vote



          accepted










          I believe you either misread '8' as '3', or there is a typo on your prof's part.



          beginalign
          E &= int_x=0^x=1int_y=0^y=1-x 24x^2y^2 , dy , dx \
          &= 24int_x=0^x=1x^2int_y=0^y=1-x y^2 , dy ,dx \
          &= 24int_x=0^x=1x^2left[fracy^33right]_y=0^y=1-x ,dx \
          &= 8int_0^1x^2(1-x)^3 ,dx \
          &= 8int_0^1x^2(1-x)^3 ,dx \
          &= 8int_0^1x^2(1-3x+3x^2-x^3) ,dx \
          &= 8int_0^1x^2-3x^3+3x^4-x^5 ,dx \
          &= 8left[fracx^33-frac3x^44+frac3x^55-fracx^66right]_0^1\
          &= 8left(frac 13-frac34+frac35-frac16right)\
          &= 8cdotfrac160 \
          &=frac215
          endalign






          share|cite|improve this answer























          • must be a typo. Can you also provide how you solved $int_0^1x^2(1-x)^3dx$ ? I am not getting $frac160 but frac512$
            – user1607
            Jul 28 at 9:54











          • @user1607 sure give me a moment
            – Karn Watcharasupat
            Jul 28 at 9:55












          up vote
          1
          down vote



          accepted







          up vote
          1
          down vote



          accepted






          I believe you either misread '8' as '3', or there is a typo on your prof's part.



          beginalign
          E &= int_x=0^x=1int_y=0^y=1-x 24x^2y^2 , dy , dx \
          &= 24int_x=0^x=1x^2int_y=0^y=1-x y^2 , dy ,dx \
          &= 24int_x=0^x=1x^2left[fracy^33right]_y=0^y=1-x ,dx \
          &= 8int_0^1x^2(1-x)^3 ,dx \
          &= 8int_0^1x^2(1-x)^3 ,dx \
          &= 8int_0^1x^2(1-3x+3x^2-x^3) ,dx \
          &= 8int_0^1x^2-3x^3+3x^4-x^5 ,dx \
          &= 8left[fracx^33-frac3x^44+frac3x^55-fracx^66right]_0^1\
          &= 8left(frac 13-frac34+frac35-frac16right)\
          &= 8cdotfrac160 \
          &=frac215
          endalign






          share|cite|improve this answer















          I believe you either misread '8' as '3', or there is a typo on your prof's part.



          beginalign
          E &= int_x=0^x=1int_y=0^y=1-x 24x^2y^2 , dy , dx \
          &= 24int_x=0^x=1x^2int_y=0^y=1-x y^2 , dy ,dx \
          &= 24int_x=0^x=1x^2left[fracy^33right]_y=0^y=1-x ,dx \
          &= 8int_0^1x^2(1-x)^3 ,dx \
          &= 8int_0^1x^2(1-x)^3 ,dx \
          &= 8int_0^1x^2(1-3x+3x^2-x^3) ,dx \
          &= 8int_0^1x^2-3x^3+3x^4-x^5 ,dx \
          &= 8left[fracx^33-frac3x^44+frac3x^55-fracx^66right]_0^1\
          &= 8left(frac 13-frac34+frac35-frac16right)\
          &= 8cdotfrac160 \
          &=frac215
          endalign







          share|cite|improve this answer















          share|cite|improve this answer



          share|cite|improve this answer








          edited Jul 28 at 10:00


























          answered Jul 28 at 9:39









          Karn Watcharasupat

          3,7992426




          3,7992426











          • must be a typo. Can you also provide how you solved $int_0^1x^2(1-x)^3dx$ ? I am not getting $frac160 but frac512$
            – user1607
            Jul 28 at 9:54











          • @user1607 sure give me a moment
            – Karn Watcharasupat
            Jul 28 at 9:55
















          • must be a typo. Can you also provide how you solved $int_0^1x^2(1-x)^3dx$ ? I am not getting $frac160 but frac512$
            – user1607
            Jul 28 at 9:54











          • @user1607 sure give me a moment
            – Karn Watcharasupat
            Jul 28 at 9:55















          must be a typo. Can you also provide how you solved $int_0^1x^2(1-x)^3dx$ ? I am not getting $frac160 but frac512$
          – user1607
          Jul 28 at 9:54





          must be a typo. Can you also provide how you solved $int_0^1x^2(1-x)^3dx$ ? I am not getting $frac160 but frac512$
          – user1607
          Jul 28 at 9:54













          @user1607 sure give me a moment
          – Karn Watcharasupat
          Jul 28 at 9:55




          @user1607 sure give me a moment
          – Karn Watcharasupat
          Jul 28 at 9:55












           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2865126%2fexercise-on-double-integration%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What is the equation of a 3D cone with generalised tilt?

          Color the edges and diagonals of a regular polygon

          Relationship between determinant of matrix and determinant of adjoint?