Diagonal matrices
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
Let $D_n$ be the set of all n*n complex diagonal matrices. Does there exist a unitary matrix $U$ in $M_n(mathbbC)$ but not in $D_n$ such that $UD_nU^*= D_n$?
linear-algebra matrices linear-transformations
add a comment |Â
up vote
3
down vote
favorite
Let $D_n$ be the set of all n*n complex diagonal matrices. Does there exist a unitary matrix $U$ in $M_n(mathbbC)$ but not in $D_n$ such that $UD_nU^*= D_n$?
linear-algebra matrices linear-transformations
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
Let $D_n$ be the set of all n*n complex diagonal matrices. Does there exist a unitary matrix $U$ in $M_n(mathbbC)$ but not in $D_n$ such that $UD_nU^*= D_n$?
linear-algebra matrices linear-transformations
Let $D_n$ be the set of all n*n complex diagonal matrices. Does there exist a unitary matrix $U$ in $M_n(mathbbC)$ but not in $D_n$ such that $UD_nU^*= D_n$?
linear-algebra matrices linear-transformations
asked Jul 28 at 17:23
rkmath
607
607
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
4
down vote
accepted
Any permutation matrix will work. For instance
$$U=pmatrix0&1&0&cdots&0\
1&0&0&cdots&0\0&0&1&cdots&0\
vdots&vdots&vdots&ddots&vdots\
0&0&0&cdots&1.$$
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
accepted
Any permutation matrix will work. For instance
$$U=pmatrix0&1&0&cdots&0\
1&0&0&cdots&0\0&0&1&cdots&0\
vdots&vdots&vdots&ddots&vdots\
0&0&0&cdots&1.$$
add a comment |Â
up vote
4
down vote
accepted
Any permutation matrix will work. For instance
$$U=pmatrix0&1&0&cdots&0\
1&0&0&cdots&0\0&0&1&cdots&0\
vdots&vdots&vdots&ddots&vdots\
0&0&0&cdots&1.$$
add a comment |Â
up vote
4
down vote
accepted
up vote
4
down vote
accepted
Any permutation matrix will work. For instance
$$U=pmatrix0&1&0&cdots&0\
1&0&0&cdots&0\0&0&1&cdots&0\
vdots&vdots&vdots&ddots&vdots\
0&0&0&cdots&1.$$
Any permutation matrix will work. For instance
$$U=pmatrix0&1&0&cdots&0\
1&0&0&cdots&0\0&0&1&cdots&0\
vdots&vdots&vdots&ddots&vdots\
0&0&0&cdots&1.$$
answered Jul 28 at 17:39
Lord Shark the Unknown
84.6k950111
84.6k950111
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2865417%2fdiagonal-matrices%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password