calculate variance of unbiased estimator in Rayleigh distribution
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Given : $hattheta = fracsum X_i^22n $ and $ E(X^2) = 2theta $. $hattheta$ is unbiased estimator for $theta$ based on i.i.d sample from $f(x;theta)= fracxthetae^frac-x^22theta$, x < 0, $theta$ < 0. (Rayleigh distribution).
calculate the variance of $hattheta$
$$ Var(hattheta) = Var(fracsum X_i^22n) = frac14n^2nVar(X^2)= frac14nVar(X^2) $$
then we know that the variance can be decomposed:
$$ Var(X) = E [(X - E(X))^2] = E(X^2) - [E(X)]^2 $$
So:
$$ frac14nVar(X^2) = frac 14n [E(X^4)-E(X^2)^2] $$
How can i calculate $E(X^4)$ ?
I am aware that this could be done through integration:
$$E(X^4) = int_0^inf x^4 fracxthetae^frac-x^22theta dx $$
But it seems rather long solution, is there a shortcut?
expectation variance parameter-estimation estimation-theory
add a comment |Â
up vote
0
down vote
favorite
Given : $hattheta = fracsum X_i^22n $ and $ E(X^2) = 2theta $. $hattheta$ is unbiased estimator for $theta$ based on i.i.d sample from $f(x;theta)= fracxthetae^frac-x^22theta$, x < 0, $theta$ < 0. (Rayleigh distribution).
calculate the variance of $hattheta$
$$ Var(hattheta) = Var(fracsum X_i^22n) = frac14n^2nVar(X^2)= frac14nVar(X^2) $$
then we know that the variance can be decomposed:
$$ Var(X) = E [(X - E(X))^2] = E(X^2) - [E(X)]^2 $$
So:
$$ frac14nVar(X^2) = frac 14n [E(X^4)-E(X^2)^2] $$
How can i calculate $E(X^4)$ ?
I am aware that this could be done through integration:
$$E(X^4) = int_0^inf x^4 fracxthetae^frac-x^22theta dx $$
But it seems rather long solution, is there a shortcut?
expectation variance parameter-estimation estimation-theory
Change of variables $u=fracx^22theta$ simplifies the integral.
â herb steinberg
Jul 28 at 15:52
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Given : $hattheta = fracsum X_i^22n $ and $ E(X^2) = 2theta $. $hattheta$ is unbiased estimator for $theta$ based on i.i.d sample from $f(x;theta)= fracxthetae^frac-x^22theta$, x < 0, $theta$ < 0. (Rayleigh distribution).
calculate the variance of $hattheta$
$$ Var(hattheta) = Var(fracsum X_i^22n) = frac14n^2nVar(X^2)= frac14nVar(X^2) $$
then we know that the variance can be decomposed:
$$ Var(X) = E [(X - E(X))^2] = E(X^2) - [E(X)]^2 $$
So:
$$ frac14nVar(X^2) = frac 14n [E(X^4)-E(X^2)^2] $$
How can i calculate $E(X^4)$ ?
I am aware that this could be done through integration:
$$E(X^4) = int_0^inf x^4 fracxthetae^frac-x^22theta dx $$
But it seems rather long solution, is there a shortcut?
expectation variance parameter-estimation estimation-theory
Given : $hattheta = fracsum X_i^22n $ and $ E(X^2) = 2theta $. $hattheta$ is unbiased estimator for $theta$ based on i.i.d sample from $f(x;theta)= fracxthetae^frac-x^22theta$, x < 0, $theta$ < 0. (Rayleigh distribution).
calculate the variance of $hattheta$
$$ Var(hattheta) = Var(fracsum X_i^22n) = frac14n^2nVar(X^2)= frac14nVar(X^2) $$
then we know that the variance can be decomposed:
$$ Var(X) = E [(X - E(X))^2] = E(X^2) - [E(X)]^2 $$
So:
$$ frac14nVar(X^2) = frac 14n [E(X^4)-E(X^2)^2] $$
How can i calculate $E(X^4)$ ?
I am aware that this could be done through integration:
$$E(X^4) = int_0^inf x^4 fracxthetae^frac-x^22theta dx $$
But it seems rather long solution, is there a shortcut?
expectation variance parameter-estimation estimation-theory
asked Jul 28 at 11:06
user1607
608
608
Change of variables $u=fracx^22theta$ simplifies the integral.
â herb steinberg
Jul 28 at 15:52
add a comment |Â
Change of variables $u=fracx^22theta$ simplifies the integral.
â herb steinberg
Jul 28 at 15:52
Change of variables $u=fracx^22theta$ simplifies the integral.
â herb steinberg
Jul 28 at 15:52
Change of variables $u=fracx^22theta$ simplifies the integral.
â herb steinberg
Jul 28 at 15:52
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2865170%2fcalculate-variance-of-unbiased-estimator-in-rayleigh-distribution%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Change of variables $u=fracx^22theta$ simplifies the integral.
â herb steinberg
Jul 28 at 15:52