A step in the equality $ widehat(T^*u)=|det T|^-1((T^t)^-1))^*hatu $
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
Suppose $ uin S^'(mathbbR^n) $, where $ S^'(mathbbR^n) $ is the dual space of the Schwartz-class functions $ S $; $ T^*u $ is the pullback via
$ T $, i.e. if $ T: mathbbR^ntomathbbR^n $ is a linear bijection and $
uin S^'(mathbbR^n)cap C(mathbbR^n) $, we can define its pullback under $ T $ by
$$
T^*u=ucirc T.
$$
Note that a change of variables gives
$$
beginalign (T^*u)(phi)&=int u(Tx)phi(x)dx\
&= int u(y)|det T^-1|phi (T^-1y)dy\
&= u(|det T^-1|phi(T^-1)),
endalign$$
so, for general $ uin S^'(mathbbR^n) $, we define the pullback using the left and right sides of this equality.
With the above notation, prove that:
$$
widehat(T^*u)=|det T|^-1((T^t)^-1))^*hatu.
$$
The Fourier transform is defined to be $$ hatf(xi)=int_mathbbR^ne^-i<x, xi>f(x)dx $$
for $ f(x)in L^1(mathbbR^n) $.
Here is what I have:
$$
beginalign
(widehatT^*u)(phi(x)) &= (T^*u)(hatphi)\
&=int_mathbbR^nT^*(u(x))hatphi(x)dx\
&= int_mathbbR^nwidehatT^*[u(x)]phi(x)dx\
&= int_mathbbR^nwidehatu[T(x)]phi(x)dx\
&= int_mathbbR^nleft[int_mathbbR^ne^-i<s, xi>u[T(s)]dsright]phi(x)dx\
endalign
$$
How to continue? I am wondering that where does the transpose come from?
functional-analysis analysis fourier-analysis
add a comment |Â
up vote
1
down vote
favorite
Suppose $ uin S^'(mathbbR^n) $, where $ S^'(mathbbR^n) $ is the dual space of the Schwartz-class functions $ S $; $ T^*u $ is the pullback via
$ T $, i.e. if $ T: mathbbR^ntomathbbR^n $ is a linear bijection and $
uin S^'(mathbbR^n)cap C(mathbbR^n) $, we can define its pullback under $ T $ by
$$
T^*u=ucirc T.
$$
Note that a change of variables gives
$$
beginalign (T^*u)(phi)&=int u(Tx)phi(x)dx\
&= int u(y)|det T^-1|phi (T^-1y)dy\
&= u(|det T^-1|phi(T^-1)),
endalign$$
so, for general $ uin S^'(mathbbR^n) $, we define the pullback using the left and right sides of this equality.
With the above notation, prove that:
$$
widehat(T^*u)=|det T|^-1((T^t)^-1))^*hatu.
$$
The Fourier transform is defined to be $$ hatf(xi)=int_mathbbR^ne^-i<x, xi>f(x)dx $$
for $ f(x)in L^1(mathbbR^n) $.
Here is what I have:
$$
beginalign
(widehatT^*u)(phi(x)) &= (T^*u)(hatphi)\
&=int_mathbbR^nT^*(u(x))hatphi(x)dx\
&= int_mathbbR^nwidehatT^*[u(x)]phi(x)dx\
&= int_mathbbR^nwidehatu[T(x)]phi(x)dx\
&= int_mathbbR^nleft[int_mathbbR^ne^-i<s, xi>u[T(s)]dsright]phi(x)dx\
endalign
$$
How to continue? I am wondering that where does the transpose come from?
functional-analysis analysis fourier-analysis
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Suppose $ uin S^'(mathbbR^n) $, where $ S^'(mathbbR^n) $ is the dual space of the Schwartz-class functions $ S $; $ T^*u $ is the pullback via
$ T $, i.e. if $ T: mathbbR^ntomathbbR^n $ is a linear bijection and $
uin S^'(mathbbR^n)cap C(mathbbR^n) $, we can define its pullback under $ T $ by
$$
T^*u=ucirc T.
$$
Note that a change of variables gives
$$
beginalign (T^*u)(phi)&=int u(Tx)phi(x)dx\
&= int u(y)|det T^-1|phi (T^-1y)dy\
&= u(|det T^-1|phi(T^-1)),
endalign$$
so, for general $ uin S^'(mathbbR^n) $, we define the pullback using the left and right sides of this equality.
With the above notation, prove that:
$$
widehat(T^*u)=|det T|^-1((T^t)^-1))^*hatu.
$$
The Fourier transform is defined to be $$ hatf(xi)=int_mathbbR^ne^-i<x, xi>f(x)dx $$
for $ f(x)in L^1(mathbbR^n) $.
Here is what I have:
$$
beginalign
(widehatT^*u)(phi(x)) &= (T^*u)(hatphi)\
&=int_mathbbR^nT^*(u(x))hatphi(x)dx\
&= int_mathbbR^nwidehatT^*[u(x)]phi(x)dx\
&= int_mathbbR^nwidehatu[T(x)]phi(x)dx\
&= int_mathbbR^nleft[int_mathbbR^ne^-i<s, xi>u[T(s)]dsright]phi(x)dx\
endalign
$$
How to continue? I am wondering that where does the transpose come from?
functional-analysis analysis fourier-analysis
Suppose $ uin S^'(mathbbR^n) $, where $ S^'(mathbbR^n) $ is the dual space of the Schwartz-class functions $ S $; $ T^*u $ is the pullback via
$ T $, i.e. if $ T: mathbbR^ntomathbbR^n $ is a linear bijection and $
uin S^'(mathbbR^n)cap C(mathbbR^n) $, we can define its pullback under $ T $ by
$$
T^*u=ucirc T.
$$
Note that a change of variables gives
$$
beginalign (T^*u)(phi)&=int u(Tx)phi(x)dx\
&= int u(y)|det T^-1|phi (T^-1y)dy\
&= u(|det T^-1|phi(T^-1)),
endalign$$
so, for general $ uin S^'(mathbbR^n) $, we define the pullback using the left and right sides of this equality.
With the above notation, prove that:
$$
widehat(T^*u)=|det T|^-1((T^t)^-1))^*hatu.
$$
The Fourier transform is defined to be $$ hatf(xi)=int_mathbbR^ne^-i<x, xi>f(x)dx $$
for $ f(x)in L^1(mathbbR^n) $.
Here is what I have:
$$
beginalign
(widehatT^*u)(phi(x)) &= (T^*u)(hatphi)\
&=int_mathbbR^nT^*(u(x))hatphi(x)dx\
&= int_mathbbR^nwidehatT^*[u(x)]phi(x)dx\
&= int_mathbbR^nwidehatu[T(x)]phi(x)dx\
&= int_mathbbR^nleft[int_mathbbR^ne^-i<s, xi>u[T(s)]dsright]phi(x)dx\
endalign
$$
How to continue? I am wondering that where does the transpose come from?
functional-analysis analysis fourier-analysis
edited Jul 18 at 14:46
asked Jul 18 at 14:24
Yuchen
751114
751114
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
1
down vote
accepted
You were off to a good start. For any $phi in cal S(mathbb R^n)$ the definitions provide
$$widehatT^*u(phi) = int_mathbb R^n T^*u(x) hat phi(x) , dx = int_mathbb R^n u(Tx) hat phi(x), dx.$$
Now change variables: with $y = Tx$ you get $dy = |det T| dx$ so that
$$ int_mathbb R^n u(Tx) hat phi(x), dx = |det T|^-1 int_mathbb R^n u(y) hat phi (T^-1y) , dy.$$
Time to investigate the Fourier transform. Observe
$$ hat phi (T^-1 y) = int_mathbb R^n e^-i langle z,T^-1y rangle phi(z) , dz$$
and $langle z,T^-1y rangle = langle (T^-1)^tz,y rangle = langle (T^t)^-1z,y rangle$, where the last equality uses the fact that the matrix representing $T$ is real.
Now combine the formulas. I will be a bit cavalier with the use of Fubini's theorem trusting that you can make it precise.
beginalign* widehatT^*u(phi) &= |det T|^-1 int_mathbb R^n int_mathbb R^n u(y) e^-i langle (T^t)^-1z,y rangle phi(z) , dz dy \ &= |det T|^-1 int_mathbb R^n int_mathbb R^n e^-i langle (T^t)^-1z,y rangle u(y), dy phi(z) , dz.
endalign*
As long as $u in L^1(mathbb R^n)$ (which doesn't seem to be implied by the hypotheses, but whatever) the inner integral equals
$ hat u ((T^t)^-1z) $ so that
$$widehatT^*u(phi) = |det T|^-1 int_mathbb R^n hat u ((T^t)^-1z) phi(z) , dz = |det T|^-1 int_mathbb R^n ((T^t)^-1)^* hat u(z) phi(z) , dz$$ where the last expression is
$|det T|^-1 ((T^t)^-1)^* hat u (phi).$ Finally disregard $phi$ to obtain
$$widehatT^*u = |det T|^-1 ((T^t)^-1)^* hat u.$$
Awesome!! Since I am not familiar with Fourier transform, I find out that I misapplied the formula $ int_mathbbR^nhatf(x)g(x)dx= int_mathbbR^nf(x)hatg(x)dx $ which led to the dead end. Thanks a lot~
â Yuchen
Jul 18 at 15:46
add a comment |Â
up vote
0
down vote
Let us start with showing that $hat phi circ T^-1 = |det(T)| , widehatphi circ T^t$:
$$
(hat phi circ T^-1)(xi)
= hat phi (T^-1xi)
= int phi(x) , e^-ilangle x, , T^-1 xi rangle , dx
= int phi(x) , e^-ilangle (T^-1)^t x, , xi rangle , dx \
= y = (T^-1)^t x
= int phi(((T^-1)^t)^-1 x) , e^-ilangle y, , xi rangle , |det((T^-1)^t)^-1| , dy \
= |det(T)| int phi(T^t x) , e^-ilangle y, , xi rangle , , dy
= |det(T)| , widehatphi circ T^t(xi)
$$
Now, we can show what you want to show. I use a different notation than you; instead of $u(phi)$ I write $langle u, phirangle.$
$$
langle widehatT^* u, phi rangle
= langle T^* u, hat phi rangle
= langle u, |det T|^-1 hat phi circ T^-1 rangle
= |det T|^-1 langle u, hat phi circ T^-1 rangle \
= text by what was shown above \
= langle u, widehatphi circ T^t rangle
= langle hat u, phi circ T^t rangle
= |det(T^-1)| , langle ((T^t)^-1)^* hat u, phi rangle
$$
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
You were off to a good start. For any $phi in cal S(mathbb R^n)$ the definitions provide
$$widehatT^*u(phi) = int_mathbb R^n T^*u(x) hat phi(x) , dx = int_mathbb R^n u(Tx) hat phi(x), dx.$$
Now change variables: with $y = Tx$ you get $dy = |det T| dx$ so that
$$ int_mathbb R^n u(Tx) hat phi(x), dx = |det T|^-1 int_mathbb R^n u(y) hat phi (T^-1y) , dy.$$
Time to investigate the Fourier transform. Observe
$$ hat phi (T^-1 y) = int_mathbb R^n e^-i langle z,T^-1y rangle phi(z) , dz$$
and $langle z,T^-1y rangle = langle (T^-1)^tz,y rangle = langle (T^t)^-1z,y rangle$, where the last equality uses the fact that the matrix representing $T$ is real.
Now combine the formulas. I will be a bit cavalier with the use of Fubini's theorem trusting that you can make it precise.
beginalign* widehatT^*u(phi) &= |det T|^-1 int_mathbb R^n int_mathbb R^n u(y) e^-i langle (T^t)^-1z,y rangle phi(z) , dz dy \ &= |det T|^-1 int_mathbb R^n int_mathbb R^n e^-i langle (T^t)^-1z,y rangle u(y), dy phi(z) , dz.
endalign*
As long as $u in L^1(mathbb R^n)$ (which doesn't seem to be implied by the hypotheses, but whatever) the inner integral equals
$ hat u ((T^t)^-1z) $ so that
$$widehatT^*u(phi) = |det T|^-1 int_mathbb R^n hat u ((T^t)^-1z) phi(z) , dz = |det T|^-1 int_mathbb R^n ((T^t)^-1)^* hat u(z) phi(z) , dz$$ where the last expression is
$|det T|^-1 ((T^t)^-1)^* hat u (phi).$ Finally disregard $phi$ to obtain
$$widehatT^*u = |det T|^-1 ((T^t)^-1)^* hat u.$$
Awesome!! Since I am not familiar with Fourier transform, I find out that I misapplied the formula $ int_mathbbR^nhatf(x)g(x)dx= int_mathbbR^nf(x)hatg(x)dx $ which led to the dead end. Thanks a lot~
â Yuchen
Jul 18 at 15:46
add a comment |Â
up vote
1
down vote
accepted
You were off to a good start. For any $phi in cal S(mathbb R^n)$ the definitions provide
$$widehatT^*u(phi) = int_mathbb R^n T^*u(x) hat phi(x) , dx = int_mathbb R^n u(Tx) hat phi(x), dx.$$
Now change variables: with $y = Tx$ you get $dy = |det T| dx$ so that
$$ int_mathbb R^n u(Tx) hat phi(x), dx = |det T|^-1 int_mathbb R^n u(y) hat phi (T^-1y) , dy.$$
Time to investigate the Fourier transform. Observe
$$ hat phi (T^-1 y) = int_mathbb R^n e^-i langle z,T^-1y rangle phi(z) , dz$$
and $langle z,T^-1y rangle = langle (T^-1)^tz,y rangle = langle (T^t)^-1z,y rangle$, where the last equality uses the fact that the matrix representing $T$ is real.
Now combine the formulas. I will be a bit cavalier with the use of Fubini's theorem trusting that you can make it precise.
beginalign* widehatT^*u(phi) &= |det T|^-1 int_mathbb R^n int_mathbb R^n u(y) e^-i langle (T^t)^-1z,y rangle phi(z) , dz dy \ &= |det T|^-1 int_mathbb R^n int_mathbb R^n e^-i langle (T^t)^-1z,y rangle u(y), dy phi(z) , dz.
endalign*
As long as $u in L^1(mathbb R^n)$ (which doesn't seem to be implied by the hypotheses, but whatever) the inner integral equals
$ hat u ((T^t)^-1z) $ so that
$$widehatT^*u(phi) = |det T|^-1 int_mathbb R^n hat u ((T^t)^-1z) phi(z) , dz = |det T|^-1 int_mathbb R^n ((T^t)^-1)^* hat u(z) phi(z) , dz$$ where the last expression is
$|det T|^-1 ((T^t)^-1)^* hat u (phi).$ Finally disregard $phi$ to obtain
$$widehatT^*u = |det T|^-1 ((T^t)^-1)^* hat u.$$
Awesome!! Since I am not familiar with Fourier transform, I find out that I misapplied the formula $ int_mathbbR^nhatf(x)g(x)dx= int_mathbbR^nf(x)hatg(x)dx $ which led to the dead end. Thanks a lot~
â Yuchen
Jul 18 at 15:46
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
You were off to a good start. For any $phi in cal S(mathbb R^n)$ the definitions provide
$$widehatT^*u(phi) = int_mathbb R^n T^*u(x) hat phi(x) , dx = int_mathbb R^n u(Tx) hat phi(x), dx.$$
Now change variables: with $y = Tx$ you get $dy = |det T| dx$ so that
$$ int_mathbb R^n u(Tx) hat phi(x), dx = |det T|^-1 int_mathbb R^n u(y) hat phi (T^-1y) , dy.$$
Time to investigate the Fourier transform. Observe
$$ hat phi (T^-1 y) = int_mathbb R^n e^-i langle z,T^-1y rangle phi(z) , dz$$
and $langle z,T^-1y rangle = langle (T^-1)^tz,y rangle = langle (T^t)^-1z,y rangle$, where the last equality uses the fact that the matrix representing $T$ is real.
Now combine the formulas. I will be a bit cavalier with the use of Fubini's theorem trusting that you can make it precise.
beginalign* widehatT^*u(phi) &= |det T|^-1 int_mathbb R^n int_mathbb R^n u(y) e^-i langle (T^t)^-1z,y rangle phi(z) , dz dy \ &= |det T|^-1 int_mathbb R^n int_mathbb R^n e^-i langle (T^t)^-1z,y rangle u(y), dy phi(z) , dz.
endalign*
As long as $u in L^1(mathbb R^n)$ (which doesn't seem to be implied by the hypotheses, but whatever) the inner integral equals
$ hat u ((T^t)^-1z) $ so that
$$widehatT^*u(phi) = |det T|^-1 int_mathbb R^n hat u ((T^t)^-1z) phi(z) , dz = |det T|^-1 int_mathbb R^n ((T^t)^-1)^* hat u(z) phi(z) , dz$$ where the last expression is
$|det T|^-1 ((T^t)^-1)^* hat u (phi).$ Finally disregard $phi$ to obtain
$$widehatT^*u = |det T|^-1 ((T^t)^-1)^* hat u.$$
You were off to a good start. For any $phi in cal S(mathbb R^n)$ the definitions provide
$$widehatT^*u(phi) = int_mathbb R^n T^*u(x) hat phi(x) , dx = int_mathbb R^n u(Tx) hat phi(x), dx.$$
Now change variables: with $y = Tx$ you get $dy = |det T| dx$ so that
$$ int_mathbb R^n u(Tx) hat phi(x), dx = |det T|^-1 int_mathbb R^n u(y) hat phi (T^-1y) , dy.$$
Time to investigate the Fourier transform. Observe
$$ hat phi (T^-1 y) = int_mathbb R^n e^-i langle z,T^-1y rangle phi(z) , dz$$
and $langle z,T^-1y rangle = langle (T^-1)^tz,y rangle = langle (T^t)^-1z,y rangle$, where the last equality uses the fact that the matrix representing $T$ is real.
Now combine the formulas. I will be a bit cavalier with the use of Fubini's theorem trusting that you can make it precise.
beginalign* widehatT^*u(phi) &= |det T|^-1 int_mathbb R^n int_mathbb R^n u(y) e^-i langle (T^t)^-1z,y rangle phi(z) , dz dy \ &= |det T|^-1 int_mathbb R^n int_mathbb R^n e^-i langle (T^t)^-1z,y rangle u(y), dy phi(z) , dz.
endalign*
As long as $u in L^1(mathbb R^n)$ (which doesn't seem to be implied by the hypotheses, but whatever) the inner integral equals
$ hat u ((T^t)^-1z) $ so that
$$widehatT^*u(phi) = |det T|^-1 int_mathbb R^n hat u ((T^t)^-1z) phi(z) , dz = |det T|^-1 int_mathbb R^n ((T^t)^-1)^* hat u(z) phi(z) , dz$$ where the last expression is
$|det T|^-1 ((T^t)^-1)^* hat u (phi).$ Finally disregard $phi$ to obtain
$$widehatT^*u = |det T|^-1 ((T^t)^-1)^* hat u.$$
answered Jul 18 at 15:22
Umberto P.
34.6k12859
34.6k12859
Awesome!! Since I am not familiar with Fourier transform, I find out that I misapplied the formula $ int_mathbbR^nhatf(x)g(x)dx= int_mathbbR^nf(x)hatg(x)dx $ which led to the dead end. Thanks a lot~
â Yuchen
Jul 18 at 15:46
add a comment |Â
Awesome!! Since I am not familiar with Fourier transform, I find out that I misapplied the formula $ int_mathbbR^nhatf(x)g(x)dx= int_mathbbR^nf(x)hatg(x)dx $ which led to the dead end. Thanks a lot~
â Yuchen
Jul 18 at 15:46
Awesome!! Since I am not familiar with Fourier transform, I find out that I misapplied the formula $ int_mathbbR^nhatf(x)g(x)dx= int_mathbbR^nf(x)hatg(x)dx $ which led to the dead end. Thanks a lot~
â Yuchen
Jul 18 at 15:46
Awesome!! Since I am not familiar with Fourier transform, I find out that I misapplied the formula $ int_mathbbR^nhatf(x)g(x)dx= int_mathbbR^nf(x)hatg(x)dx $ which led to the dead end. Thanks a lot~
â Yuchen
Jul 18 at 15:46
add a comment |Â
up vote
0
down vote
Let us start with showing that $hat phi circ T^-1 = |det(T)| , widehatphi circ T^t$:
$$
(hat phi circ T^-1)(xi)
= hat phi (T^-1xi)
= int phi(x) , e^-ilangle x, , T^-1 xi rangle , dx
= int phi(x) , e^-ilangle (T^-1)^t x, , xi rangle , dx \
= y = (T^-1)^t x
= int phi(((T^-1)^t)^-1 x) , e^-ilangle y, , xi rangle , |det((T^-1)^t)^-1| , dy \
= |det(T)| int phi(T^t x) , e^-ilangle y, , xi rangle , , dy
= |det(T)| , widehatphi circ T^t(xi)
$$
Now, we can show what you want to show. I use a different notation than you; instead of $u(phi)$ I write $langle u, phirangle.$
$$
langle widehatT^* u, phi rangle
= langle T^* u, hat phi rangle
= langle u, |det T|^-1 hat phi circ T^-1 rangle
= |det T|^-1 langle u, hat phi circ T^-1 rangle \
= text by what was shown above \
= langle u, widehatphi circ T^t rangle
= langle hat u, phi circ T^t rangle
= |det(T^-1)| , langle ((T^t)^-1)^* hat u, phi rangle
$$
add a comment |Â
up vote
0
down vote
Let us start with showing that $hat phi circ T^-1 = |det(T)| , widehatphi circ T^t$:
$$
(hat phi circ T^-1)(xi)
= hat phi (T^-1xi)
= int phi(x) , e^-ilangle x, , T^-1 xi rangle , dx
= int phi(x) , e^-ilangle (T^-1)^t x, , xi rangle , dx \
= y = (T^-1)^t x
= int phi(((T^-1)^t)^-1 x) , e^-ilangle y, , xi rangle , |det((T^-1)^t)^-1| , dy \
= |det(T)| int phi(T^t x) , e^-ilangle y, , xi rangle , , dy
= |det(T)| , widehatphi circ T^t(xi)
$$
Now, we can show what you want to show. I use a different notation than you; instead of $u(phi)$ I write $langle u, phirangle.$
$$
langle widehatT^* u, phi rangle
= langle T^* u, hat phi rangle
= langle u, |det T|^-1 hat phi circ T^-1 rangle
= |det T|^-1 langle u, hat phi circ T^-1 rangle \
= text by what was shown above \
= langle u, widehatphi circ T^t rangle
= langle hat u, phi circ T^t rangle
= |det(T^-1)| , langle ((T^t)^-1)^* hat u, phi rangle
$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Let us start with showing that $hat phi circ T^-1 = |det(T)| , widehatphi circ T^t$:
$$
(hat phi circ T^-1)(xi)
= hat phi (T^-1xi)
= int phi(x) , e^-ilangle x, , T^-1 xi rangle , dx
= int phi(x) , e^-ilangle (T^-1)^t x, , xi rangle , dx \
= y = (T^-1)^t x
= int phi(((T^-1)^t)^-1 x) , e^-ilangle y, , xi rangle , |det((T^-1)^t)^-1| , dy \
= |det(T)| int phi(T^t x) , e^-ilangle y, , xi rangle , , dy
= |det(T)| , widehatphi circ T^t(xi)
$$
Now, we can show what you want to show. I use a different notation than you; instead of $u(phi)$ I write $langle u, phirangle.$
$$
langle widehatT^* u, phi rangle
= langle T^* u, hat phi rangle
= langle u, |det T|^-1 hat phi circ T^-1 rangle
= |det T|^-1 langle u, hat phi circ T^-1 rangle \
= text by what was shown above \
= langle u, widehatphi circ T^t rangle
= langle hat u, phi circ T^t rangle
= |det(T^-1)| , langle ((T^t)^-1)^* hat u, phi rangle
$$
Let us start with showing that $hat phi circ T^-1 = |det(T)| , widehatphi circ T^t$:
$$
(hat phi circ T^-1)(xi)
= hat phi (T^-1xi)
= int phi(x) , e^-ilangle x, , T^-1 xi rangle , dx
= int phi(x) , e^-ilangle (T^-1)^t x, , xi rangle , dx \
= y = (T^-1)^t x
= int phi(((T^-1)^t)^-1 x) , e^-ilangle y, , xi rangle , |det((T^-1)^t)^-1| , dy \
= |det(T)| int phi(T^t x) , e^-ilangle y, , xi rangle , , dy
= |det(T)| , widehatphi circ T^t(xi)
$$
Now, we can show what you want to show. I use a different notation than you; instead of $u(phi)$ I write $langle u, phirangle.$
$$
langle widehatT^* u, phi rangle
= langle T^* u, hat phi rangle
= langle u, |det T|^-1 hat phi circ T^-1 rangle
= |det T|^-1 langle u, hat phi circ T^-1 rangle \
= text by what was shown above \
= langle u, widehatphi circ T^t rangle
= langle hat u, phi circ T^t rangle
= |det(T^-1)| , langle ((T^t)^-1)^* hat u, phi rangle
$$
answered Jul 18 at 15:26
md2perpe
5,93011022
5,93011022
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2855623%2fa-step-in-the-equality-widehattu-det-t-1tt-1-hat%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password