A step in the equality $ widehat(T^*u)=|det T|^-1((T^t)^-1))^*hatu $

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












Suppose $ uin S^'(mathbbR^n) $, where $ S^'(mathbbR^n) $ is the dual space of the Schwartz-class functions $ S $; $ T^*u $ is the pullback via
$ T $, i.e. if $ T: mathbbR^ntomathbbR^n $ is a linear bijection and $
uin S^'(mathbbR^n)cap C(mathbbR^n) $, we can define its pullback under $ T $ by
$$
T^*u=ucirc T.
$$



Note that a change of variables gives



$$
beginalign (T^*u)(phi)&=int u(Tx)phi(x)dx\
&= int u(y)|det T^-1|phi (T^-1y)dy\
&= u(|det T^-1|phi(T^-1)),
endalign$$
so, for general $ uin S^'(mathbbR^n) $, we define the pullback using the left and right sides of this equality.



With the above notation, prove that:




$$
widehat(T^*u)=|det T|^-1((T^t)^-1))^*hatu.
$$




The Fourier transform is defined to be $$ hatf(xi)=int_mathbbR^ne^-i<x, xi>f(x)dx $$
for $ f(x)in L^1(mathbbR^n) $.




Here is what I have:
$$
beginalign
(widehatT^*u)(phi(x)) &= (T^*u)(hatphi)\
&=int_mathbbR^nT^*(u(x))hatphi(x)dx\
&= int_mathbbR^nwidehatT^*[u(x)]phi(x)dx\
&= int_mathbbR^nwidehatu[T(x)]phi(x)dx\
&= int_mathbbR^nleft[int_mathbbR^ne^-i<s, xi>u[T(s)]dsright]phi(x)dx\
endalign
$$



How to continue? I am wondering that where does the transpose come from?







share|cite|improve this question

























    up vote
    1
    down vote

    favorite












    Suppose $ uin S^'(mathbbR^n) $, where $ S^'(mathbbR^n) $ is the dual space of the Schwartz-class functions $ S $; $ T^*u $ is the pullback via
    $ T $, i.e. if $ T: mathbbR^ntomathbbR^n $ is a linear bijection and $
    uin S^'(mathbbR^n)cap C(mathbbR^n) $, we can define its pullback under $ T $ by
    $$
    T^*u=ucirc T.
    $$



    Note that a change of variables gives



    $$
    beginalign (T^*u)(phi)&=int u(Tx)phi(x)dx\
    &= int u(y)|det T^-1|phi (T^-1y)dy\
    &= u(|det T^-1|phi(T^-1)),
    endalign$$
    so, for general $ uin S^'(mathbbR^n) $, we define the pullback using the left and right sides of this equality.



    With the above notation, prove that:




    $$
    widehat(T^*u)=|det T|^-1((T^t)^-1))^*hatu.
    $$




    The Fourier transform is defined to be $$ hatf(xi)=int_mathbbR^ne^-i<x, xi>f(x)dx $$
    for $ f(x)in L^1(mathbbR^n) $.




    Here is what I have:
    $$
    beginalign
    (widehatT^*u)(phi(x)) &= (T^*u)(hatphi)\
    &=int_mathbbR^nT^*(u(x))hatphi(x)dx\
    &= int_mathbbR^nwidehatT^*[u(x)]phi(x)dx\
    &= int_mathbbR^nwidehatu[T(x)]phi(x)dx\
    &= int_mathbbR^nleft[int_mathbbR^ne^-i<s, xi>u[T(s)]dsright]phi(x)dx\
    endalign
    $$



    How to continue? I am wondering that where does the transpose come from?







    share|cite|improve this question























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      Suppose $ uin S^'(mathbbR^n) $, where $ S^'(mathbbR^n) $ is the dual space of the Schwartz-class functions $ S $; $ T^*u $ is the pullback via
      $ T $, i.e. if $ T: mathbbR^ntomathbbR^n $ is a linear bijection and $
      uin S^'(mathbbR^n)cap C(mathbbR^n) $, we can define its pullback under $ T $ by
      $$
      T^*u=ucirc T.
      $$



      Note that a change of variables gives



      $$
      beginalign (T^*u)(phi)&=int u(Tx)phi(x)dx\
      &= int u(y)|det T^-1|phi (T^-1y)dy\
      &= u(|det T^-1|phi(T^-1)),
      endalign$$
      so, for general $ uin S^'(mathbbR^n) $, we define the pullback using the left and right sides of this equality.



      With the above notation, prove that:




      $$
      widehat(T^*u)=|det T|^-1((T^t)^-1))^*hatu.
      $$




      The Fourier transform is defined to be $$ hatf(xi)=int_mathbbR^ne^-i<x, xi>f(x)dx $$
      for $ f(x)in L^1(mathbbR^n) $.




      Here is what I have:
      $$
      beginalign
      (widehatT^*u)(phi(x)) &= (T^*u)(hatphi)\
      &=int_mathbbR^nT^*(u(x))hatphi(x)dx\
      &= int_mathbbR^nwidehatT^*[u(x)]phi(x)dx\
      &= int_mathbbR^nwidehatu[T(x)]phi(x)dx\
      &= int_mathbbR^nleft[int_mathbbR^ne^-i<s, xi>u[T(s)]dsright]phi(x)dx\
      endalign
      $$



      How to continue? I am wondering that where does the transpose come from?







      share|cite|improve this question













      Suppose $ uin S^'(mathbbR^n) $, where $ S^'(mathbbR^n) $ is the dual space of the Schwartz-class functions $ S $; $ T^*u $ is the pullback via
      $ T $, i.e. if $ T: mathbbR^ntomathbbR^n $ is a linear bijection and $
      uin S^'(mathbbR^n)cap C(mathbbR^n) $, we can define its pullback under $ T $ by
      $$
      T^*u=ucirc T.
      $$



      Note that a change of variables gives



      $$
      beginalign (T^*u)(phi)&=int u(Tx)phi(x)dx\
      &= int u(y)|det T^-1|phi (T^-1y)dy\
      &= u(|det T^-1|phi(T^-1)),
      endalign$$
      so, for general $ uin S^'(mathbbR^n) $, we define the pullback using the left and right sides of this equality.



      With the above notation, prove that:




      $$
      widehat(T^*u)=|det T|^-1((T^t)^-1))^*hatu.
      $$




      The Fourier transform is defined to be $$ hatf(xi)=int_mathbbR^ne^-i<x, xi>f(x)dx $$
      for $ f(x)in L^1(mathbbR^n) $.




      Here is what I have:
      $$
      beginalign
      (widehatT^*u)(phi(x)) &= (T^*u)(hatphi)\
      &=int_mathbbR^nT^*(u(x))hatphi(x)dx\
      &= int_mathbbR^nwidehatT^*[u(x)]phi(x)dx\
      &= int_mathbbR^nwidehatu[T(x)]phi(x)dx\
      &= int_mathbbR^nleft[int_mathbbR^ne^-i<s, xi>u[T(s)]dsright]phi(x)dx\
      endalign
      $$



      How to continue? I am wondering that where does the transpose come from?









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Jul 18 at 14:46
























      asked Jul 18 at 14:24









      Yuchen

      751114




      751114




















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          You were off to a good start. For any $phi in cal S(mathbb R^n)$ the definitions provide
          $$widehatT^*u(phi) = int_mathbb R^n T^*u(x) hat phi(x) , dx = int_mathbb R^n u(Tx) hat phi(x), dx.$$



          Now change variables: with $y = Tx$ you get $dy = |det T| dx$ so that
          $$ int_mathbb R^n u(Tx) hat phi(x), dx = |det T|^-1 int_mathbb R^n u(y) hat phi (T^-1y) , dy.$$



          Time to investigate the Fourier transform. Observe
          $$ hat phi (T^-1 y) = int_mathbb R^n e^-i langle z,T^-1y rangle phi(z) , dz$$
          and $langle z,T^-1y rangle = langle (T^-1)^tz,y rangle = langle (T^t)^-1z,y rangle$, where the last equality uses the fact that the matrix representing $T$ is real.



          Now combine the formulas. I will be a bit cavalier with the use of Fubini's theorem trusting that you can make it precise.



          beginalign* widehatT^*u(phi) &= |det T|^-1 int_mathbb R^n int_mathbb R^n u(y) e^-i langle (T^t)^-1z,y rangle phi(z) , dz dy \ &= |det T|^-1 int_mathbb R^n int_mathbb R^n e^-i langle (T^t)^-1z,y rangle u(y), dy phi(z) , dz.
          endalign*



          As long as $u in L^1(mathbb R^n)$ (which doesn't seem to be implied by the hypotheses, but whatever) the inner integral equals
          $ hat u ((T^t)^-1z) $ so that
          $$widehatT^*u(phi) = |det T|^-1 int_mathbb R^n hat u ((T^t)^-1z) phi(z) , dz = |det T|^-1 int_mathbb R^n ((T^t)^-1)^* hat u(z) phi(z) , dz$$ where the last expression is
          $|det T|^-1 ((T^t)^-1)^* hat u (phi).$ Finally disregard $phi$ to obtain
          $$widehatT^*u = |det T|^-1 ((T^t)^-1)^* hat u.$$






          share|cite|improve this answer





















          • Awesome!! Since I am not familiar with Fourier transform, I find out that I misapplied the formula $ int_mathbbR^nhatf(x)g(x)dx= int_mathbbR^nf(x)hatg(x)dx $ which led to the dead end. Thanks a lot~
            – Yuchen
            Jul 18 at 15:46


















          up vote
          0
          down vote













          Let us start with showing that $hat phi circ T^-1 = |det(T)| , widehatphi circ T^t$:
          $$
          (hat phi circ T^-1)(xi)
          = hat phi (T^-1xi)
          = int phi(x) , e^-ilangle x, , T^-1 xi rangle , dx
          = int phi(x) , e^-ilangle (T^-1)^t x, , xi rangle , dx \
          = y = (T^-1)^t x
          = int phi(((T^-1)^t)^-1 x) , e^-ilangle y, , xi rangle , |det((T^-1)^t)^-1| , dy \
          = |det(T)| int phi(T^t x) , e^-ilangle y, , xi rangle , , dy
          = |det(T)| , widehatphi circ T^t(xi)
          $$



          Now, we can show what you want to show. I use a different notation than you; instead of $u(phi)$ I write $langle u, phirangle.$
          $$
          langle widehatT^* u, phi rangle
          = langle T^* u, hat phi rangle
          = langle u, |det T|^-1 hat phi circ T^-1 rangle
          = |det T|^-1 langle u, hat phi circ T^-1 rangle \
          = text by what was shown above \
          = langle u, widehatphi circ T^t rangle
          = langle hat u, phi circ T^t rangle
          = |det(T^-1)| , langle ((T^t)^-1)^* hat u, phi rangle
          $$






          share|cite|improve this answer





















            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );








             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2855623%2fa-step-in-the-equality-widehattu-det-t-1tt-1-hat%23new-answer', 'question_page');

            );

            Post as a guest






























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            1
            down vote



            accepted










            You were off to a good start. For any $phi in cal S(mathbb R^n)$ the definitions provide
            $$widehatT^*u(phi) = int_mathbb R^n T^*u(x) hat phi(x) , dx = int_mathbb R^n u(Tx) hat phi(x), dx.$$



            Now change variables: with $y = Tx$ you get $dy = |det T| dx$ so that
            $$ int_mathbb R^n u(Tx) hat phi(x), dx = |det T|^-1 int_mathbb R^n u(y) hat phi (T^-1y) , dy.$$



            Time to investigate the Fourier transform. Observe
            $$ hat phi (T^-1 y) = int_mathbb R^n e^-i langle z,T^-1y rangle phi(z) , dz$$
            and $langle z,T^-1y rangle = langle (T^-1)^tz,y rangle = langle (T^t)^-1z,y rangle$, where the last equality uses the fact that the matrix representing $T$ is real.



            Now combine the formulas. I will be a bit cavalier with the use of Fubini's theorem trusting that you can make it precise.



            beginalign* widehatT^*u(phi) &= |det T|^-1 int_mathbb R^n int_mathbb R^n u(y) e^-i langle (T^t)^-1z,y rangle phi(z) , dz dy \ &= |det T|^-1 int_mathbb R^n int_mathbb R^n e^-i langle (T^t)^-1z,y rangle u(y), dy phi(z) , dz.
            endalign*



            As long as $u in L^1(mathbb R^n)$ (which doesn't seem to be implied by the hypotheses, but whatever) the inner integral equals
            $ hat u ((T^t)^-1z) $ so that
            $$widehatT^*u(phi) = |det T|^-1 int_mathbb R^n hat u ((T^t)^-1z) phi(z) , dz = |det T|^-1 int_mathbb R^n ((T^t)^-1)^* hat u(z) phi(z) , dz$$ where the last expression is
            $|det T|^-1 ((T^t)^-1)^* hat u (phi).$ Finally disregard $phi$ to obtain
            $$widehatT^*u = |det T|^-1 ((T^t)^-1)^* hat u.$$






            share|cite|improve this answer





















            • Awesome!! Since I am not familiar with Fourier transform, I find out that I misapplied the formula $ int_mathbbR^nhatf(x)g(x)dx= int_mathbbR^nf(x)hatg(x)dx $ which led to the dead end. Thanks a lot~
              – Yuchen
              Jul 18 at 15:46















            up vote
            1
            down vote



            accepted










            You were off to a good start. For any $phi in cal S(mathbb R^n)$ the definitions provide
            $$widehatT^*u(phi) = int_mathbb R^n T^*u(x) hat phi(x) , dx = int_mathbb R^n u(Tx) hat phi(x), dx.$$



            Now change variables: with $y = Tx$ you get $dy = |det T| dx$ so that
            $$ int_mathbb R^n u(Tx) hat phi(x), dx = |det T|^-1 int_mathbb R^n u(y) hat phi (T^-1y) , dy.$$



            Time to investigate the Fourier transform. Observe
            $$ hat phi (T^-1 y) = int_mathbb R^n e^-i langle z,T^-1y rangle phi(z) , dz$$
            and $langle z,T^-1y rangle = langle (T^-1)^tz,y rangle = langle (T^t)^-1z,y rangle$, where the last equality uses the fact that the matrix representing $T$ is real.



            Now combine the formulas. I will be a bit cavalier with the use of Fubini's theorem trusting that you can make it precise.



            beginalign* widehatT^*u(phi) &= |det T|^-1 int_mathbb R^n int_mathbb R^n u(y) e^-i langle (T^t)^-1z,y rangle phi(z) , dz dy \ &= |det T|^-1 int_mathbb R^n int_mathbb R^n e^-i langle (T^t)^-1z,y rangle u(y), dy phi(z) , dz.
            endalign*



            As long as $u in L^1(mathbb R^n)$ (which doesn't seem to be implied by the hypotheses, but whatever) the inner integral equals
            $ hat u ((T^t)^-1z) $ so that
            $$widehatT^*u(phi) = |det T|^-1 int_mathbb R^n hat u ((T^t)^-1z) phi(z) , dz = |det T|^-1 int_mathbb R^n ((T^t)^-1)^* hat u(z) phi(z) , dz$$ where the last expression is
            $|det T|^-1 ((T^t)^-1)^* hat u (phi).$ Finally disregard $phi$ to obtain
            $$widehatT^*u = |det T|^-1 ((T^t)^-1)^* hat u.$$






            share|cite|improve this answer





















            • Awesome!! Since I am not familiar with Fourier transform, I find out that I misapplied the formula $ int_mathbbR^nhatf(x)g(x)dx= int_mathbbR^nf(x)hatg(x)dx $ which led to the dead end. Thanks a lot~
              – Yuchen
              Jul 18 at 15:46













            up vote
            1
            down vote



            accepted







            up vote
            1
            down vote



            accepted






            You were off to a good start. For any $phi in cal S(mathbb R^n)$ the definitions provide
            $$widehatT^*u(phi) = int_mathbb R^n T^*u(x) hat phi(x) , dx = int_mathbb R^n u(Tx) hat phi(x), dx.$$



            Now change variables: with $y = Tx$ you get $dy = |det T| dx$ so that
            $$ int_mathbb R^n u(Tx) hat phi(x), dx = |det T|^-1 int_mathbb R^n u(y) hat phi (T^-1y) , dy.$$



            Time to investigate the Fourier transform. Observe
            $$ hat phi (T^-1 y) = int_mathbb R^n e^-i langle z,T^-1y rangle phi(z) , dz$$
            and $langle z,T^-1y rangle = langle (T^-1)^tz,y rangle = langle (T^t)^-1z,y rangle$, where the last equality uses the fact that the matrix representing $T$ is real.



            Now combine the formulas. I will be a bit cavalier with the use of Fubini's theorem trusting that you can make it precise.



            beginalign* widehatT^*u(phi) &= |det T|^-1 int_mathbb R^n int_mathbb R^n u(y) e^-i langle (T^t)^-1z,y rangle phi(z) , dz dy \ &= |det T|^-1 int_mathbb R^n int_mathbb R^n e^-i langle (T^t)^-1z,y rangle u(y), dy phi(z) , dz.
            endalign*



            As long as $u in L^1(mathbb R^n)$ (which doesn't seem to be implied by the hypotheses, but whatever) the inner integral equals
            $ hat u ((T^t)^-1z) $ so that
            $$widehatT^*u(phi) = |det T|^-1 int_mathbb R^n hat u ((T^t)^-1z) phi(z) , dz = |det T|^-1 int_mathbb R^n ((T^t)^-1)^* hat u(z) phi(z) , dz$$ where the last expression is
            $|det T|^-1 ((T^t)^-1)^* hat u (phi).$ Finally disregard $phi$ to obtain
            $$widehatT^*u = |det T|^-1 ((T^t)^-1)^* hat u.$$






            share|cite|improve this answer













            You were off to a good start. For any $phi in cal S(mathbb R^n)$ the definitions provide
            $$widehatT^*u(phi) = int_mathbb R^n T^*u(x) hat phi(x) , dx = int_mathbb R^n u(Tx) hat phi(x), dx.$$



            Now change variables: with $y = Tx$ you get $dy = |det T| dx$ so that
            $$ int_mathbb R^n u(Tx) hat phi(x), dx = |det T|^-1 int_mathbb R^n u(y) hat phi (T^-1y) , dy.$$



            Time to investigate the Fourier transform. Observe
            $$ hat phi (T^-1 y) = int_mathbb R^n e^-i langle z,T^-1y rangle phi(z) , dz$$
            and $langle z,T^-1y rangle = langle (T^-1)^tz,y rangle = langle (T^t)^-1z,y rangle$, where the last equality uses the fact that the matrix representing $T$ is real.



            Now combine the formulas. I will be a bit cavalier with the use of Fubini's theorem trusting that you can make it precise.



            beginalign* widehatT^*u(phi) &= |det T|^-1 int_mathbb R^n int_mathbb R^n u(y) e^-i langle (T^t)^-1z,y rangle phi(z) , dz dy \ &= |det T|^-1 int_mathbb R^n int_mathbb R^n e^-i langle (T^t)^-1z,y rangle u(y), dy phi(z) , dz.
            endalign*



            As long as $u in L^1(mathbb R^n)$ (which doesn't seem to be implied by the hypotheses, but whatever) the inner integral equals
            $ hat u ((T^t)^-1z) $ so that
            $$widehatT^*u(phi) = |det T|^-1 int_mathbb R^n hat u ((T^t)^-1z) phi(z) , dz = |det T|^-1 int_mathbb R^n ((T^t)^-1)^* hat u(z) phi(z) , dz$$ where the last expression is
            $|det T|^-1 ((T^t)^-1)^* hat u (phi).$ Finally disregard $phi$ to obtain
            $$widehatT^*u = |det T|^-1 ((T^t)^-1)^* hat u.$$







            share|cite|improve this answer













            share|cite|improve this answer



            share|cite|improve this answer











            answered Jul 18 at 15:22









            Umberto P.

            34.6k12859




            34.6k12859











            • Awesome!! Since I am not familiar with Fourier transform, I find out that I misapplied the formula $ int_mathbbR^nhatf(x)g(x)dx= int_mathbbR^nf(x)hatg(x)dx $ which led to the dead end. Thanks a lot~
              – Yuchen
              Jul 18 at 15:46

















            • Awesome!! Since I am not familiar with Fourier transform, I find out that I misapplied the formula $ int_mathbbR^nhatf(x)g(x)dx= int_mathbbR^nf(x)hatg(x)dx $ which led to the dead end. Thanks a lot~
              – Yuchen
              Jul 18 at 15:46
















            Awesome!! Since I am not familiar with Fourier transform, I find out that I misapplied the formula $ int_mathbbR^nhatf(x)g(x)dx= int_mathbbR^nf(x)hatg(x)dx $ which led to the dead end. Thanks a lot~
            – Yuchen
            Jul 18 at 15:46





            Awesome!! Since I am not familiar with Fourier transform, I find out that I misapplied the formula $ int_mathbbR^nhatf(x)g(x)dx= int_mathbbR^nf(x)hatg(x)dx $ which led to the dead end. Thanks a lot~
            – Yuchen
            Jul 18 at 15:46











            up vote
            0
            down vote













            Let us start with showing that $hat phi circ T^-1 = |det(T)| , widehatphi circ T^t$:
            $$
            (hat phi circ T^-1)(xi)
            = hat phi (T^-1xi)
            = int phi(x) , e^-ilangle x, , T^-1 xi rangle , dx
            = int phi(x) , e^-ilangle (T^-1)^t x, , xi rangle , dx \
            = y = (T^-1)^t x
            = int phi(((T^-1)^t)^-1 x) , e^-ilangle y, , xi rangle , |det((T^-1)^t)^-1| , dy \
            = |det(T)| int phi(T^t x) , e^-ilangle y, , xi rangle , , dy
            = |det(T)| , widehatphi circ T^t(xi)
            $$



            Now, we can show what you want to show. I use a different notation than you; instead of $u(phi)$ I write $langle u, phirangle.$
            $$
            langle widehatT^* u, phi rangle
            = langle T^* u, hat phi rangle
            = langle u, |det T|^-1 hat phi circ T^-1 rangle
            = |det T|^-1 langle u, hat phi circ T^-1 rangle \
            = text by what was shown above \
            = langle u, widehatphi circ T^t rangle
            = langle hat u, phi circ T^t rangle
            = |det(T^-1)| , langle ((T^t)^-1)^* hat u, phi rangle
            $$






            share|cite|improve this answer

























              up vote
              0
              down vote













              Let us start with showing that $hat phi circ T^-1 = |det(T)| , widehatphi circ T^t$:
              $$
              (hat phi circ T^-1)(xi)
              = hat phi (T^-1xi)
              = int phi(x) , e^-ilangle x, , T^-1 xi rangle , dx
              = int phi(x) , e^-ilangle (T^-1)^t x, , xi rangle , dx \
              = y = (T^-1)^t x
              = int phi(((T^-1)^t)^-1 x) , e^-ilangle y, , xi rangle , |det((T^-1)^t)^-1| , dy \
              = |det(T)| int phi(T^t x) , e^-ilangle y, , xi rangle , , dy
              = |det(T)| , widehatphi circ T^t(xi)
              $$



              Now, we can show what you want to show. I use a different notation than you; instead of $u(phi)$ I write $langle u, phirangle.$
              $$
              langle widehatT^* u, phi rangle
              = langle T^* u, hat phi rangle
              = langle u, |det T|^-1 hat phi circ T^-1 rangle
              = |det T|^-1 langle u, hat phi circ T^-1 rangle \
              = text by what was shown above \
              = langle u, widehatphi circ T^t rangle
              = langle hat u, phi circ T^t rangle
              = |det(T^-1)| , langle ((T^t)^-1)^* hat u, phi rangle
              $$






              share|cite|improve this answer























                up vote
                0
                down vote










                up vote
                0
                down vote









                Let us start with showing that $hat phi circ T^-1 = |det(T)| , widehatphi circ T^t$:
                $$
                (hat phi circ T^-1)(xi)
                = hat phi (T^-1xi)
                = int phi(x) , e^-ilangle x, , T^-1 xi rangle , dx
                = int phi(x) , e^-ilangle (T^-1)^t x, , xi rangle , dx \
                = y = (T^-1)^t x
                = int phi(((T^-1)^t)^-1 x) , e^-ilangle y, , xi rangle , |det((T^-1)^t)^-1| , dy \
                = |det(T)| int phi(T^t x) , e^-ilangle y, , xi rangle , , dy
                = |det(T)| , widehatphi circ T^t(xi)
                $$



                Now, we can show what you want to show. I use a different notation than you; instead of $u(phi)$ I write $langle u, phirangle.$
                $$
                langle widehatT^* u, phi rangle
                = langle T^* u, hat phi rangle
                = langle u, |det T|^-1 hat phi circ T^-1 rangle
                = |det T|^-1 langle u, hat phi circ T^-1 rangle \
                = text by what was shown above \
                = langle u, widehatphi circ T^t rangle
                = langle hat u, phi circ T^t rangle
                = |det(T^-1)| , langle ((T^t)^-1)^* hat u, phi rangle
                $$






                share|cite|improve this answer













                Let us start with showing that $hat phi circ T^-1 = |det(T)| , widehatphi circ T^t$:
                $$
                (hat phi circ T^-1)(xi)
                = hat phi (T^-1xi)
                = int phi(x) , e^-ilangle x, , T^-1 xi rangle , dx
                = int phi(x) , e^-ilangle (T^-1)^t x, , xi rangle , dx \
                = y = (T^-1)^t x
                = int phi(((T^-1)^t)^-1 x) , e^-ilangle y, , xi rangle , |det((T^-1)^t)^-1| , dy \
                = |det(T)| int phi(T^t x) , e^-ilangle y, , xi rangle , , dy
                = |det(T)| , widehatphi circ T^t(xi)
                $$



                Now, we can show what you want to show. I use a different notation than you; instead of $u(phi)$ I write $langle u, phirangle.$
                $$
                langle widehatT^* u, phi rangle
                = langle T^* u, hat phi rangle
                = langle u, |det T|^-1 hat phi circ T^-1 rangle
                = |det T|^-1 langle u, hat phi circ T^-1 rangle \
                = text by what was shown above \
                = langle u, widehatphi circ T^t rangle
                = langle hat u, phi circ T^t rangle
                = |det(T^-1)| , langle ((T^t)^-1)^* hat u, phi rangle
                $$







                share|cite|improve this answer













                share|cite|improve this answer



                share|cite|improve this answer











                answered Jul 18 at 15:26









                md2perpe

                5,93011022




                5,93011022






















                     

                    draft saved


                    draft discarded


























                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2855623%2fa-step-in-the-equality-widehattu-det-t-1tt-1-hat%23new-answer', 'question_page');

                    );

                    Post as a guest













































































                    Comments

                    Popular posts from this blog

                    Color the edges and diagonals of a regular polygon

                    Relationship between determinant of matrix and determinant of adjoint?

                    What is the equation of a 3D cone with generalised tilt?