Compute $lim_xto 0^+int_2x^3xfracsin(t)sinh^2(t)dt$.

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
4
down vote

favorite
1












How can I compute $$lim_xto 0^+int_2x^3xfracsin(t)sinh^2(t)dt ?$$



Suppose $x<pi$. I tried using DCT since $$left|fracsin(t)sinh^2(t)boldsymbol 1_[2x,3x(t)right|leq fracsin(t)sin^2(t),$$



but the function on the RHS is not integrable... It should have a trick.







share|cite|improve this question



















  • The integrand is asymptotic to $1/t$.
    – Yves Daoust
    Jul 18 at 10:20










  • For the fun of it, try numerical integration with $x=frac 14$; you should get $approx 0.335004$ while, using the expansion, you should get $approx 0.335627$.
    – Claude Leibovici
    Jul 18 at 10:36














up vote
4
down vote

favorite
1












How can I compute $$lim_xto 0^+int_2x^3xfracsin(t)sinh^2(t)dt ?$$



Suppose $x<pi$. I tried using DCT since $$left|fracsin(t)sinh^2(t)boldsymbol 1_[2x,3x(t)right|leq fracsin(t)sin^2(t),$$



but the function on the RHS is not integrable... It should have a trick.







share|cite|improve this question



















  • The integrand is asymptotic to $1/t$.
    – Yves Daoust
    Jul 18 at 10:20










  • For the fun of it, try numerical integration with $x=frac 14$; you should get $approx 0.335004$ while, using the expansion, you should get $approx 0.335627$.
    – Claude Leibovici
    Jul 18 at 10:36












up vote
4
down vote

favorite
1









up vote
4
down vote

favorite
1






1





How can I compute $$lim_xto 0^+int_2x^3xfracsin(t)sinh^2(t)dt ?$$



Suppose $x<pi$. I tried using DCT since $$left|fracsin(t)sinh^2(t)boldsymbol 1_[2x,3x(t)right|leq fracsin(t)sin^2(t),$$



but the function on the RHS is not integrable... It should have a trick.







share|cite|improve this question











How can I compute $$lim_xto 0^+int_2x^3xfracsin(t)sinh^2(t)dt ?$$



Suppose $x<pi$. I tried using DCT since $$left|fracsin(t)sinh^2(t)boldsymbol 1_[2x,3x(t)right|leq fracsin(t)sin^2(t),$$



but the function on the RHS is not integrable... It should have a trick.









share|cite|improve this question










share|cite|improve this question




share|cite|improve this question









asked Jul 18 at 9:42









MathBeginner

707312




707312











  • The integrand is asymptotic to $1/t$.
    – Yves Daoust
    Jul 18 at 10:20










  • For the fun of it, try numerical integration with $x=frac 14$; you should get $approx 0.335004$ while, using the expansion, you should get $approx 0.335627$.
    – Claude Leibovici
    Jul 18 at 10:36
















  • The integrand is asymptotic to $1/t$.
    – Yves Daoust
    Jul 18 at 10:20










  • For the fun of it, try numerical integration with $x=frac 14$; you should get $approx 0.335004$ while, using the expansion, you should get $approx 0.335627$.
    – Claude Leibovici
    Jul 18 at 10:36















The integrand is asymptotic to $1/t$.
– Yves Daoust
Jul 18 at 10:20




The integrand is asymptotic to $1/t$.
– Yves Daoust
Jul 18 at 10:20












For the fun of it, try numerical integration with $x=frac 14$; you should get $approx 0.335004$ while, using the expansion, you should get $approx 0.335627$.
– Claude Leibovici
Jul 18 at 10:36




For the fun of it, try numerical integration with $x=frac 14$; you should get $approx 0.335004$ while, using the expansion, you should get $approx 0.335627$.
– Claude Leibovici
Jul 18 at 10:36










4 Answers
4






active

oldest

votes

















up vote
5
down vote













You have$$lim_tto0^+fracsin(t)sinh^2(t)-frac1t=lim_tto0^+fractsin(t)-sinh^2(t)tsinh^2(t)=0$$and thereforebeginalignlim_xto0^+int_2x^3xfracsin(t)sinh^2(t),mathrm dt&=lim_xto0^+left(int_2x^3xfracsin(t)sinh^2(t)-frac1t,mathrm dtright)+lim_xto0^+int_2x^3xfracmathrm dtt\&=lim_xto0^+bigl(log(3x)-log(2x)bigr)\&=logleft(frac32right).endalign






share|cite|improve this answer




























    up vote
    1
    down vote













    The Taylor development of the smooth even function



    $$fractsin tsinh^2t$$



    is of the form



    $$1-fract^22+o(t^2)$$



    so that for small $t$ there is certainly a finite $a$ such that



    $$1-at^2lefractsin tsinh^2tle1.$$



    (In fact $a=dfrac12$ works.)



    This implies



    $$frac1t-atlefracsin tsinh^2tlefrac1t,$$



    and integrating between $2x$ and $3x$ ($<t$),



    $$logfrac32-axle Ile logfrac32.$$






    share|cite|improve this answer






























      up vote
      1
      down vote













      Put $ f(t)=dfractsin(t)sinh^2(t) $. Then
      $lim_tto 0^+f(t) = 1$.



      From the Second mean value theorem for definite integrals we get
      beginequation*
      int_2x^3xdfracsin(t)sinh^2(t), mathrmdt = int_2x^3xf(t)dfrac1t, mathrmdt = f(xi)int_2x^3xdfrac1t, mathrmdt = f(xi)logleft(dfrac32right)
      endequation*
      where $ 2x<xi <3x$. Consequently
      beginequation*
      lim_tto 0^+int_2x^3xdfracsin(t)sinh^2(t), mathrmdt = logleft(dfrac32right).
      endequation*






      share|cite|improve this answer




























        up vote
        0
        down vote













        You could also use series expansion of the integrand. This would give
        $$fracsin(t)sinh^2(t)=fract-fract^36+fract^5120+Oleft(t^7right) left(t+fract^36+fract^5120+Oleft(t^7right) right)^2 =fract-fract^36+fract^5120+Oleft(t^7right) t^2+fract^43+frac2 t^645+Oleft(t^8right) =frac1t-fract2+frac47 t^3360+Oleft(t^5right)$$ Now, integrate, use the bounds and so on.






        share|cite|improve this answer





















          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2855407%2fcompute-lim-x-to-0-int-2x3x-frac-sint-sinh2tdt%23new-answer', 'question_page');

          );

          Post as a guest






























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          5
          down vote













          You have$$lim_tto0^+fracsin(t)sinh^2(t)-frac1t=lim_tto0^+fractsin(t)-sinh^2(t)tsinh^2(t)=0$$and thereforebeginalignlim_xto0^+int_2x^3xfracsin(t)sinh^2(t),mathrm dt&=lim_xto0^+left(int_2x^3xfracsin(t)sinh^2(t)-frac1t,mathrm dtright)+lim_xto0^+int_2x^3xfracmathrm dtt\&=lim_xto0^+bigl(log(3x)-log(2x)bigr)\&=logleft(frac32right).endalign






          share|cite|improve this answer

























            up vote
            5
            down vote













            You have$$lim_tto0^+fracsin(t)sinh^2(t)-frac1t=lim_tto0^+fractsin(t)-sinh^2(t)tsinh^2(t)=0$$and thereforebeginalignlim_xto0^+int_2x^3xfracsin(t)sinh^2(t),mathrm dt&=lim_xto0^+left(int_2x^3xfracsin(t)sinh^2(t)-frac1t,mathrm dtright)+lim_xto0^+int_2x^3xfracmathrm dtt\&=lim_xto0^+bigl(log(3x)-log(2x)bigr)\&=logleft(frac32right).endalign






            share|cite|improve this answer























              up vote
              5
              down vote










              up vote
              5
              down vote









              You have$$lim_tto0^+fracsin(t)sinh^2(t)-frac1t=lim_tto0^+fractsin(t)-sinh^2(t)tsinh^2(t)=0$$and thereforebeginalignlim_xto0^+int_2x^3xfracsin(t)sinh^2(t),mathrm dt&=lim_xto0^+left(int_2x^3xfracsin(t)sinh^2(t)-frac1t,mathrm dtright)+lim_xto0^+int_2x^3xfracmathrm dtt\&=lim_xto0^+bigl(log(3x)-log(2x)bigr)\&=logleft(frac32right).endalign






              share|cite|improve this answer













              You have$$lim_tto0^+fracsin(t)sinh^2(t)-frac1t=lim_tto0^+fractsin(t)-sinh^2(t)tsinh^2(t)=0$$and thereforebeginalignlim_xto0^+int_2x^3xfracsin(t)sinh^2(t),mathrm dt&=lim_xto0^+left(int_2x^3xfracsin(t)sinh^2(t)-frac1t,mathrm dtright)+lim_xto0^+int_2x^3xfracmathrm dtt\&=lim_xto0^+bigl(log(3x)-log(2x)bigr)\&=logleft(frac32right).endalign







              share|cite|improve this answer













              share|cite|improve this answer



              share|cite|improve this answer











              answered Jul 18 at 9:50









              José Carlos Santos

              114k1698177




              114k1698177




















                  up vote
                  1
                  down vote













                  The Taylor development of the smooth even function



                  $$fractsin tsinh^2t$$



                  is of the form



                  $$1-fract^22+o(t^2)$$



                  so that for small $t$ there is certainly a finite $a$ such that



                  $$1-at^2lefractsin tsinh^2tle1.$$



                  (In fact $a=dfrac12$ works.)



                  This implies



                  $$frac1t-atlefracsin tsinh^2tlefrac1t,$$



                  and integrating between $2x$ and $3x$ ($<t$),



                  $$logfrac32-axle Ile logfrac32.$$






                  share|cite|improve this answer



























                    up vote
                    1
                    down vote













                    The Taylor development of the smooth even function



                    $$fractsin tsinh^2t$$



                    is of the form



                    $$1-fract^22+o(t^2)$$



                    so that for small $t$ there is certainly a finite $a$ such that



                    $$1-at^2lefractsin tsinh^2tle1.$$



                    (In fact $a=dfrac12$ works.)



                    This implies



                    $$frac1t-atlefracsin tsinh^2tlefrac1t,$$



                    and integrating between $2x$ and $3x$ ($<t$),



                    $$logfrac32-axle Ile logfrac32.$$






                    share|cite|improve this answer

























                      up vote
                      1
                      down vote










                      up vote
                      1
                      down vote









                      The Taylor development of the smooth even function



                      $$fractsin tsinh^2t$$



                      is of the form



                      $$1-fract^22+o(t^2)$$



                      so that for small $t$ there is certainly a finite $a$ such that



                      $$1-at^2lefractsin tsinh^2tle1.$$



                      (In fact $a=dfrac12$ works.)



                      This implies



                      $$frac1t-atlefracsin tsinh^2tlefrac1t,$$



                      and integrating between $2x$ and $3x$ ($<t$),



                      $$logfrac32-axle Ile logfrac32.$$






                      share|cite|improve this answer















                      The Taylor development of the smooth even function



                      $$fractsin tsinh^2t$$



                      is of the form



                      $$1-fract^22+o(t^2)$$



                      so that for small $t$ there is certainly a finite $a$ such that



                      $$1-at^2lefractsin tsinh^2tle1.$$



                      (In fact $a=dfrac12$ works.)



                      This implies



                      $$frac1t-atlefracsin tsinh^2tlefrac1t,$$



                      and integrating between $2x$ and $3x$ ($<t$),



                      $$logfrac32-axle Ile logfrac32.$$







                      share|cite|improve this answer















                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited Jul 18 at 11:13


























                      answered Jul 18 at 10:59









                      Yves Daoust

                      111k665204




                      111k665204




















                          up vote
                          1
                          down vote













                          Put $ f(t)=dfractsin(t)sinh^2(t) $. Then
                          $lim_tto 0^+f(t) = 1$.



                          From the Second mean value theorem for definite integrals we get
                          beginequation*
                          int_2x^3xdfracsin(t)sinh^2(t), mathrmdt = int_2x^3xf(t)dfrac1t, mathrmdt = f(xi)int_2x^3xdfrac1t, mathrmdt = f(xi)logleft(dfrac32right)
                          endequation*
                          where $ 2x<xi <3x$. Consequently
                          beginequation*
                          lim_tto 0^+int_2x^3xdfracsin(t)sinh^2(t), mathrmdt = logleft(dfrac32right).
                          endequation*






                          share|cite|improve this answer

























                            up vote
                            1
                            down vote













                            Put $ f(t)=dfractsin(t)sinh^2(t) $. Then
                            $lim_tto 0^+f(t) = 1$.



                            From the Second mean value theorem for definite integrals we get
                            beginequation*
                            int_2x^3xdfracsin(t)sinh^2(t), mathrmdt = int_2x^3xf(t)dfrac1t, mathrmdt = f(xi)int_2x^3xdfrac1t, mathrmdt = f(xi)logleft(dfrac32right)
                            endequation*
                            where $ 2x<xi <3x$. Consequently
                            beginequation*
                            lim_tto 0^+int_2x^3xdfracsin(t)sinh^2(t), mathrmdt = logleft(dfrac32right).
                            endequation*






                            share|cite|improve this answer























                              up vote
                              1
                              down vote










                              up vote
                              1
                              down vote









                              Put $ f(t)=dfractsin(t)sinh^2(t) $. Then
                              $lim_tto 0^+f(t) = 1$.



                              From the Second mean value theorem for definite integrals we get
                              beginequation*
                              int_2x^3xdfracsin(t)sinh^2(t), mathrmdt = int_2x^3xf(t)dfrac1t, mathrmdt = f(xi)int_2x^3xdfrac1t, mathrmdt = f(xi)logleft(dfrac32right)
                              endequation*
                              where $ 2x<xi <3x$. Consequently
                              beginequation*
                              lim_tto 0^+int_2x^3xdfracsin(t)sinh^2(t), mathrmdt = logleft(dfrac32right).
                              endequation*






                              share|cite|improve this answer













                              Put $ f(t)=dfractsin(t)sinh^2(t) $. Then
                              $lim_tto 0^+f(t) = 1$.



                              From the Second mean value theorem for definite integrals we get
                              beginequation*
                              int_2x^3xdfracsin(t)sinh^2(t), mathrmdt = int_2x^3xf(t)dfrac1t, mathrmdt = f(xi)int_2x^3xdfrac1t, mathrmdt = f(xi)logleft(dfrac32right)
                              endequation*
                              where $ 2x<xi <3x$. Consequently
                              beginequation*
                              lim_tto 0^+int_2x^3xdfracsin(t)sinh^2(t), mathrmdt = logleft(dfrac32right).
                              endequation*







                              share|cite|improve this answer













                              share|cite|improve this answer



                              share|cite|improve this answer











                              answered Jul 18 at 11:38









                              JanG

                              2,572412




                              2,572412




















                                  up vote
                                  0
                                  down vote













                                  You could also use series expansion of the integrand. This would give
                                  $$fracsin(t)sinh^2(t)=fract-fract^36+fract^5120+Oleft(t^7right) left(t+fract^36+fract^5120+Oleft(t^7right) right)^2 =fract-fract^36+fract^5120+Oleft(t^7right) t^2+fract^43+frac2 t^645+Oleft(t^8right) =frac1t-fract2+frac47 t^3360+Oleft(t^5right)$$ Now, integrate, use the bounds and so on.






                                  share|cite|improve this answer

























                                    up vote
                                    0
                                    down vote













                                    You could also use series expansion of the integrand. This would give
                                    $$fracsin(t)sinh^2(t)=fract-fract^36+fract^5120+Oleft(t^7right) left(t+fract^36+fract^5120+Oleft(t^7right) right)^2 =fract-fract^36+fract^5120+Oleft(t^7right) t^2+fract^43+frac2 t^645+Oleft(t^8right) =frac1t-fract2+frac47 t^3360+Oleft(t^5right)$$ Now, integrate, use the bounds and so on.






                                    share|cite|improve this answer























                                      up vote
                                      0
                                      down vote










                                      up vote
                                      0
                                      down vote









                                      You could also use series expansion of the integrand. This would give
                                      $$fracsin(t)sinh^2(t)=fract-fract^36+fract^5120+Oleft(t^7right) left(t+fract^36+fract^5120+Oleft(t^7right) right)^2 =fract-fract^36+fract^5120+Oleft(t^7right) t^2+fract^43+frac2 t^645+Oleft(t^8right) =frac1t-fract2+frac47 t^3360+Oleft(t^5right)$$ Now, integrate, use the bounds and so on.






                                      share|cite|improve this answer













                                      You could also use series expansion of the integrand. This would give
                                      $$fracsin(t)sinh^2(t)=fract-fract^36+fract^5120+Oleft(t^7right) left(t+fract^36+fract^5120+Oleft(t^7right) right)^2 =fract-fract^36+fract^5120+Oleft(t^7right) t^2+fract^43+frac2 t^645+Oleft(t^8right) =frac1t-fract2+frac47 t^3360+Oleft(t^5right)$$ Now, integrate, use the bounds and so on.







                                      share|cite|improve this answer













                                      share|cite|improve this answer



                                      share|cite|improve this answer











                                      answered Jul 18 at 10:17









                                      Claude Leibovici

                                      112k1055126




                                      112k1055126






















                                           

                                          draft saved


                                          draft discarded


























                                           


                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function ()
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2855407%2fcompute-lim-x-to-0-int-2x3x-frac-sint-sinh2tdt%23new-answer', 'question_page');

                                          );

                                          Post as a guest













































































                                          Comments

                                          Popular posts from this blog

                                          Color the edges and diagonals of a regular polygon

                                          Relationship between determinant of matrix and determinant of adjoint?

                                          What is the equation of a 3D cone with generalised tilt?