Compute $lim_xto 0^+int_2x^3xfracsin(t)sinh^2(t)dt$.
Clash Royale CLAN TAG#URR8PPP
up vote
4
down vote
favorite
How can I compute $$lim_xto 0^+int_2x^3xfracsin(t)sinh^2(t)dt ?$$
Suppose $x<pi$. I tried using DCT since $$left|fracsin(t)sinh^2(t)boldsymbol 1_[2x,3x(t)right|leq fracsin(t)sin^2(t),$$
but the function on the RHS is not integrable... It should have a trick.
real-analysis integration limits
add a comment |Â
up vote
4
down vote
favorite
How can I compute $$lim_xto 0^+int_2x^3xfracsin(t)sinh^2(t)dt ?$$
Suppose $x<pi$. I tried using DCT since $$left|fracsin(t)sinh^2(t)boldsymbol 1_[2x,3x(t)right|leq fracsin(t)sin^2(t),$$
but the function on the RHS is not integrable... It should have a trick.
real-analysis integration limits
The integrand is asymptotic to $1/t$.
â Yves Daoust
Jul 18 at 10:20
For the fun of it, try numerical integration with $x=frac 14$; you should get $approx 0.335004$ while, using the expansion, you should get $approx 0.335627$.
â Claude Leibovici
Jul 18 at 10:36
add a comment |Â
up vote
4
down vote
favorite
up vote
4
down vote
favorite
How can I compute $$lim_xto 0^+int_2x^3xfracsin(t)sinh^2(t)dt ?$$
Suppose $x<pi$. I tried using DCT since $$left|fracsin(t)sinh^2(t)boldsymbol 1_[2x,3x(t)right|leq fracsin(t)sin^2(t),$$
but the function on the RHS is not integrable... It should have a trick.
real-analysis integration limits
How can I compute $$lim_xto 0^+int_2x^3xfracsin(t)sinh^2(t)dt ?$$
Suppose $x<pi$. I tried using DCT since $$left|fracsin(t)sinh^2(t)boldsymbol 1_[2x,3x(t)right|leq fracsin(t)sin^2(t),$$
but the function on the RHS is not integrable... It should have a trick.
real-analysis integration limits
asked Jul 18 at 9:42
MathBeginner
707312
707312
The integrand is asymptotic to $1/t$.
â Yves Daoust
Jul 18 at 10:20
For the fun of it, try numerical integration with $x=frac 14$; you should get $approx 0.335004$ while, using the expansion, you should get $approx 0.335627$.
â Claude Leibovici
Jul 18 at 10:36
add a comment |Â
The integrand is asymptotic to $1/t$.
â Yves Daoust
Jul 18 at 10:20
For the fun of it, try numerical integration with $x=frac 14$; you should get $approx 0.335004$ while, using the expansion, you should get $approx 0.335627$.
â Claude Leibovici
Jul 18 at 10:36
The integrand is asymptotic to $1/t$.
â Yves Daoust
Jul 18 at 10:20
The integrand is asymptotic to $1/t$.
â Yves Daoust
Jul 18 at 10:20
For the fun of it, try numerical integration with $x=frac 14$; you should get $approx 0.335004$ while, using the expansion, you should get $approx 0.335627$.
â Claude Leibovici
Jul 18 at 10:36
For the fun of it, try numerical integration with $x=frac 14$; you should get $approx 0.335004$ while, using the expansion, you should get $approx 0.335627$.
â Claude Leibovici
Jul 18 at 10:36
add a comment |Â
4 Answers
4
active
oldest
votes
up vote
5
down vote
You have$$lim_tto0^+fracsin(t)sinh^2(t)-frac1t=lim_tto0^+fractsin(t)-sinh^2(t)tsinh^2(t)=0$$and thereforebeginalignlim_xto0^+int_2x^3xfracsin(t)sinh^2(t),mathrm dt&=lim_xto0^+left(int_2x^3xfracsin(t)sinh^2(t)-frac1t,mathrm dtright)+lim_xto0^+int_2x^3xfracmathrm dtt\&=lim_xto0^+bigl(log(3x)-log(2x)bigr)\&=logleft(frac32right).endalign
add a comment |Â
up vote
1
down vote
The Taylor development of the smooth even function
$$fractsin tsinh^2t$$
is of the form
$$1-fract^22+o(t^2)$$
so that for small $t$ there is certainly a finite $a$ such that
$$1-at^2lefractsin tsinh^2tle1.$$
(In fact $a=dfrac12$ works.)
This implies
$$frac1t-atlefracsin tsinh^2tlefrac1t,$$
and integrating between $2x$ and $3x$ ($<t$),
$$logfrac32-axle Ile logfrac32.$$
add a comment |Â
up vote
1
down vote
Put $ f(t)=dfractsin(t)sinh^2(t) $. Then
$lim_tto 0^+f(t) = 1$.
From the Second mean value theorem for definite integrals we get
beginequation*
int_2x^3xdfracsin(t)sinh^2(t), mathrmdt = int_2x^3xf(t)dfrac1t, mathrmdt = f(xi)int_2x^3xdfrac1t, mathrmdt = f(xi)logleft(dfrac32right)
endequation*
where $ 2x<xi <3x$. Consequently
beginequation*
lim_tto 0^+int_2x^3xdfracsin(t)sinh^2(t), mathrmdt = logleft(dfrac32right).
endequation*
add a comment |Â
up vote
0
down vote
You could also use series expansion of the integrand. This would give
$$fracsin(t)sinh^2(t)=fract-fract^36+fract^5120+Oleft(t^7right) left(t+fract^36+fract^5120+Oleft(t^7right) right)^2 =fract-fract^36+fract^5120+Oleft(t^7right) t^2+fract^43+frac2 t^645+Oleft(t^8right) =frac1t-fract2+frac47 t^3360+Oleft(t^5right)$$ Now, integrate, use the bounds and so on.
add a comment |Â
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
5
down vote
You have$$lim_tto0^+fracsin(t)sinh^2(t)-frac1t=lim_tto0^+fractsin(t)-sinh^2(t)tsinh^2(t)=0$$and thereforebeginalignlim_xto0^+int_2x^3xfracsin(t)sinh^2(t),mathrm dt&=lim_xto0^+left(int_2x^3xfracsin(t)sinh^2(t)-frac1t,mathrm dtright)+lim_xto0^+int_2x^3xfracmathrm dtt\&=lim_xto0^+bigl(log(3x)-log(2x)bigr)\&=logleft(frac32right).endalign
add a comment |Â
up vote
5
down vote
You have$$lim_tto0^+fracsin(t)sinh^2(t)-frac1t=lim_tto0^+fractsin(t)-sinh^2(t)tsinh^2(t)=0$$and thereforebeginalignlim_xto0^+int_2x^3xfracsin(t)sinh^2(t),mathrm dt&=lim_xto0^+left(int_2x^3xfracsin(t)sinh^2(t)-frac1t,mathrm dtright)+lim_xto0^+int_2x^3xfracmathrm dtt\&=lim_xto0^+bigl(log(3x)-log(2x)bigr)\&=logleft(frac32right).endalign
add a comment |Â
up vote
5
down vote
up vote
5
down vote
You have$$lim_tto0^+fracsin(t)sinh^2(t)-frac1t=lim_tto0^+fractsin(t)-sinh^2(t)tsinh^2(t)=0$$and thereforebeginalignlim_xto0^+int_2x^3xfracsin(t)sinh^2(t),mathrm dt&=lim_xto0^+left(int_2x^3xfracsin(t)sinh^2(t)-frac1t,mathrm dtright)+lim_xto0^+int_2x^3xfracmathrm dtt\&=lim_xto0^+bigl(log(3x)-log(2x)bigr)\&=logleft(frac32right).endalign
You have$$lim_tto0^+fracsin(t)sinh^2(t)-frac1t=lim_tto0^+fractsin(t)-sinh^2(t)tsinh^2(t)=0$$and thereforebeginalignlim_xto0^+int_2x^3xfracsin(t)sinh^2(t),mathrm dt&=lim_xto0^+left(int_2x^3xfracsin(t)sinh^2(t)-frac1t,mathrm dtright)+lim_xto0^+int_2x^3xfracmathrm dtt\&=lim_xto0^+bigl(log(3x)-log(2x)bigr)\&=logleft(frac32right).endalign
answered Jul 18 at 9:50
José Carlos Santos
114k1698177
114k1698177
add a comment |Â
add a comment |Â
up vote
1
down vote
The Taylor development of the smooth even function
$$fractsin tsinh^2t$$
is of the form
$$1-fract^22+o(t^2)$$
so that for small $t$ there is certainly a finite $a$ such that
$$1-at^2lefractsin tsinh^2tle1.$$
(In fact $a=dfrac12$ works.)
This implies
$$frac1t-atlefracsin tsinh^2tlefrac1t,$$
and integrating between $2x$ and $3x$ ($<t$),
$$logfrac32-axle Ile logfrac32.$$
add a comment |Â
up vote
1
down vote
The Taylor development of the smooth even function
$$fractsin tsinh^2t$$
is of the form
$$1-fract^22+o(t^2)$$
so that for small $t$ there is certainly a finite $a$ such that
$$1-at^2lefractsin tsinh^2tle1.$$
(In fact $a=dfrac12$ works.)
This implies
$$frac1t-atlefracsin tsinh^2tlefrac1t,$$
and integrating between $2x$ and $3x$ ($<t$),
$$logfrac32-axle Ile logfrac32.$$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
The Taylor development of the smooth even function
$$fractsin tsinh^2t$$
is of the form
$$1-fract^22+o(t^2)$$
so that for small $t$ there is certainly a finite $a$ such that
$$1-at^2lefractsin tsinh^2tle1.$$
(In fact $a=dfrac12$ works.)
This implies
$$frac1t-atlefracsin tsinh^2tlefrac1t,$$
and integrating between $2x$ and $3x$ ($<t$),
$$logfrac32-axle Ile logfrac32.$$
The Taylor development of the smooth even function
$$fractsin tsinh^2t$$
is of the form
$$1-fract^22+o(t^2)$$
so that for small $t$ there is certainly a finite $a$ such that
$$1-at^2lefractsin tsinh^2tle1.$$
(In fact $a=dfrac12$ works.)
This implies
$$frac1t-atlefracsin tsinh^2tlefrac1t,$$
and integrating between $2x$ and $3x$ ($<t$),
$$logfrac32-axle Ile logfrac32.$$
edited Jul 18 at 11:13
answered Jul 18 at 10:59
Yves Daoust
111k665204
111k665204
add a comment |Â
add a comment |Â
up vote
1
down vote
Put $ f(t)=dfractsin(t)sinh^2(t) $. Then
$lim_tto 0^+f(t) = 1$.
From the Second mean value theorem for definite integrals we get
beginequation*
int_2x^3xdfracsin(t)sinh^2(t), mathrmdt = int_2x^3xf(t)dfrac1t, mathrmdt = f(xi)int_2x^3xdfrac1t, mathrmdt = f(xi)logleft(dfrac32right)
endequation*
where $ 2x<xi <3x$. Consequently
beginequation*
lim_tto 0^+int_2x^3xdfracsin(t)sinh^2(t), mathrmdt = logleft(dfrac32right).
endequation*
add a comment |Â
up vote
1
down vote
Put $ f(t)=dfractsin(t)sinh^2(t) $. Then
$lim_tto 0^+f(t) = 1$.
From the Second mean value theorem for definite integrals we get
beginequation*
int_2x^3xdfracsin(t)sinh^2(t), mathrmdt = int_2x^3xf(t)dfrac1t, mathrmdt = f(xi)int_2x^3xdfrac1t, mathrmdt = f(xi)logleft(dfrac32right)
endequation*
where $ 2x<xi <3x$. Consequently
beginequation*
lim_tto 0^+int_2x^3xdfracsin(t)sinh^2(t), mathrmdt = logleft(dfrac32right).
endequation*
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Put $ f(t)=dfractsin(t)sinh^2(t) $. Then
$lim_tto 0^+f(t) = 1$.
From the Second mean value theorem for definite integrals we get
beginequation*
int_2x^3xdfracsin(t)sinh^2(t), mathrmdt = int_2x^3xf(t)dfrac1t, mathrmdt = f(xi)int_2x^3xdfrac1t, mathrmdt = f(xi)logleft(dfrac32right)
endequation*
where $ 2x<xi <3x$. Consequently
beginequation*
lim_tto 0^+int_2x^3xdfracsin(t)sinh^2(t), mathrmdt = logleft(dfrac32right).
endequation*
Put $ f(t)=dfractsin(t)sinh^2(t) $. Then
$lim_tto 0^+f(t) = 1$.
From the Second mean value theorem for definite integrals we get
beginequation*
int_2x^3xdfracsin(t)sinh^2(t), mathrmdt = int_2x^3xf(t)dfrac1t, mathrmdt = f(xi)int_2x^3xdfrac1t, mathrmdt = f(xi)logleft(dfrac32right)
endequation*
where $ 2x<xi <3x$. Consequently
beginequation*
lim_tto 0^+int_2x^3xdfracsin(t)sinh^2(t), mathrmdt = logleft(dfrac32right).
endequation*
answered Jul 18 at 11:38
JanG
2,572412
2,572412
add a comment |Â
add a comment |Â
up vote
0
down vote
You could also use series expansion of the integrand. This would give
$$fracsin(t)sinh^2(t)=fract-fract^36+fract^5120+Oleft(t^7right) left(t+fract^36+fract^5120+Oleft(t^7right) right)^2 =fract-fract^36+fract^5120+Oleft(t^7right) t^2+fract^43+frac2 t^645+Oleft(t^8right) =frac1t-fract2+frac47 t^3360+Oleft(t^5right)$$ Now, integrate, use the bounds and so on.
add a comment |Â
up vote
0
down vote
You could also use series expansion of the integrand. This would give
$$fracsin(t)sinh^2(t)=fract-fract^36+fract^5120+Oleft(t^7right) left(t+fract^36+fract^5120+Oleft(t^7right) right)^2 =fract-fract^36+fract^5120+Oleft(t^7right) t^2+fract^43+frac2 t^645+Oleft(t^8right) =frac1t-fract2+frac47 t^3360+Oleft(t^5right)$$ Now, integrate, use the bounds and so on.
add a comment |Â
up vote
0
down vote
up vote
0
down vote
You could also use series expansion of the integrand. This would give
$$fracsin(t)sinh^2(t)=fract-fract^36+fract^5120+Oleft(t^7right) left(t+fract^36+fract^5120+Oleft(t^7right) right)^2 =fract-fract^36+fract^5120+Oleft(t^7right) t^2+fract^43+frac2 t^645+Oleft(t^8right) =frac1t-fract2+frac47 t^3360+Oleft(t^5right)$$ Now, integrate, use the bounds and so on.
You could also use series expansion of the integrand. This would give
$$fracsin(t)sinh^2(t)=fract-fract^36+fract^5120+Oleft(t^7right) left(t+fract^36+fract^5120+Oleft(t^7right) right)^2 =fract-fract^36+fract^5120+Oleft(t^7right) t^2+fract^43+frac2 t^645+Oleft(t^8right) =frac1t-fract2+frac47 t^3360+Oleft(t^5right)$$ Now, integrate, use the bounds and so on.
answered Jul 18 at 10:17
Claude Leibovici
112k1055126
112k1055126
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2855407%2fcompute-lim-x-to-0-int-2x3x-frac-sint-sinh2tdt%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
The integrand is asymptotic to $1/t$.
â Yves Daoust
Jul 18 at 10:20
For the fun of it, try numerical integration with $x=frac 14$; you should get $approx 0.335004$ while, using the expansion, you should get $approx 0.335627$.
â Claude Leibovici
Jul 18 at 10:36