Dual of Schanuel's Lemma
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
Let $0 rightarrow M rightarrow E rightarrow K rightarrow 0$ and $0
rightarrow M rightarrow E' rightarrow K' rightarrow 0$ be short
exact sequences with $M$ a left $R$-module and $E, E'$ injective left
R-modules. Prove the dual version of SchanuelâÂÂs Lemma by showing that
E â Kâ² $cong$ Eâ² â K.
Two questions:
- What is the dual of Schanuel's Lemma precisely?
- How does "showing that E â Kâ² $cong$ Eâ² â K" succeed in proving the dual of Schanuel's Lemma?
abstract-algebra modules
add a comment |Â
up vote
2
down vote
favorite
Let $0 rightarrow M rightarrow E rightarrow K rightarrow 0$ and $0
rightarrow M rightarrow E' rightarrow K' rightarrow 0$ be short
exact sequences with $M$ a left $R$-module and $E, E'$ injective left
R-modules. Prove the dual version of SchanuelâÂÂs Lemma by showing that
E â Kâ² $cong$ Eâ² â K.
Two questions:
- What is the dual of Schanuel's Lemma precisely?
- How does "showing that E â Kâ² $cong$ Eâ² â K" succeed in proving the dual of Schanuel's Lemma?
abstract-algebra modules
1
The dual of S's lemma is $Eoplus K'cong E'oplus K$.
â Lord Shark the Unknown
Jul 18 at 15:58
What does it mean for a E, E' to be "injective left R-modules"? I thought that only functions could be injective.
â Tomislav Ostojich
Jul 20 at 15:24
en.wikipedia.org/wiki/Injective_module
â Lord Shark the Unknown
Jul 20 at 15:25
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Let $0 rightarrow M rightarrow E rightarrow K rightarrow 0$ and $0
rightarrow M rightarrow E' rightarrow K' rightarrow 0$ be short
exact sequences with $M$ a left $R$-module and $E, E'$ injective left
R-modules. Prove the dual version of SchanuelâÂÂs Lemma by showing that
E â Kâ² $cong$ Eâ² â K.
Two questions:
- What is the dual of Schanuel's Lemma precisely?
- How does "showing that E â Kâ² $cong$ Eâ² â K" succeed in proving the dual of Schanuel's Lemma?
abstract-algebra modules
Let $0 rightarrow M rightarrow E rightarrow K rightarrow 0$ and $0
rightarrow M rightarrow E' rightarrow K' rightarrow 0$ be short
exact sequences with $M$ a left $R$-module and $E, E'$ injective left
R-modules. Prove the dual version of SchanuelâÂÂs Lemma by showing that
E â Kâ² $cong$ Eâ² â K.
Two questions:
- What is the dual of Schanuel's Lemma precisely?
- How does "showing that E â Kâ² $cong$ Eâ² â K" succeed in proving the dual of Schanuel's Lemma?
abstract-algebra modules
edited Jul 18 at 15:37
Javi
2,1631725
2,1631725
asked Jul 18 at 15:34
Tomislav Ostojich
475313
475313
1
The dual of S's lemma is $Eoplus K'cong E'oplus K$.
â Lord Shark the Unknown
Jul 18 at 15:58
What does it mean for a E, E' to be "injective left R-modules"? I thought that only functions could be injective.
â Tomislav Ostojich
Jul 20 at 15:24
en.wikipedia.org/wiki/Injective_module
â Lord Shark the Unknown
Jul 20 at 15:25
add a comment |Â
1
The dual of S's lemma is $Eoplus K'cong E'oplus K$.
â Lord Shark the Unknown
Jul 18 at 15:58
What does it mean for a E, E' to be "injective left R-modules"? I thought that only functions could be injective.
â Tomislav Ostojich
Jul 20 at 15:24
en.wikipedia.org/wiki/Injective_module
â Lord Shark the Unknown
Jul 20 at 15:25
1
1
The dual of S's lemma is $Eoplus K'cong E'oplus K$.
â Lord Shark the Unknown
Jul 18 at 15:58
The dual of S's lemma is $Eoplus K'cong E'oplus K$.
â Lord Shark the Unknown
Jul 18 at 15:58
What does it mean for a E, E' to be "injective left R-modules"? I thought that only functions could be injective.
â Tomislav Ostojich
Jul 20 at 15:24
What does it mean for a E, E' to be "injective left R-modules"? I thought that only functions could be injective.
â Tomislav Ostojich
Jul 20 at 15:24
en.wikipedia.org/wiki/Injective_module
â Lord Shark the Unknown
Jul 20 at 15:25
en.wikipedia.org/wiki/Injective_module
â Lord Shark the Unknown
Jul 20 at 15:25
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2855690%2fdual-of-schanuels-lemma%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
1
The dual of S's lemma is $Eoplus K'cong E'oplus K$.
â Lord Shark the Unknown
Jul 18 at 15:58
What does it mean for a E, E' to be "injective left R-modules"? I thought that only functions could be injective.
â Tomislav Ostojich
Jul 20 at 15:24
en.wikipedia.org/wiki/Injective_module
â Lord Shark the Unknown
Jul 20 at 15:25