Solving matrix exponential of 4x4 matrix
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
Wondering how to find the matrix exponential of the following matrix without having to do through the long process of finding eigenvalues/eigenvectors and Jordan forms. Is there a quicker way to do it using Sine/Cosine ?
If
A = $$beginpmatrix0 & 1 & 1 & 1 \
1 & 0 & 1 & 1 \
1 & 1 & 0 & 1 \
1 & 1 & 1 & 0 \
endpmatrix$$
Find beginequation e^tA endequation
matrices differential-equations matrix-exponential
add a comment |Â
up vote
2
down vote
favorite
Wondering how to find the matrix exponential of the following matrix without having to do through the long process of finding eigenvalues/eigenvectors and Jordan forms. Is there a quicker way to do it using Sine/Cosine ?
If
A = $$beginpmatrix0 & 1 & 1 & 1 \
1 & 0 & 1 & 1 \
1 & 1 & 0 & 1 \
1 & 1 & 1 & 0 \
endpmatrix$$
Find beginequation e^tA endequation
matrices differential-equations matrix-exponential
I'm afraid I am unfamiliar
â Culliton Andrew
12 hours ago
you want a quicker way involving only pen and paper or computer based would also work for you?
â pointguard0
12 hours ago
Apologies, I should have specified this is a question that appeared on my Differential Equations Exam so it would have to be pen and paper. I am looking for a different way to do it because the 'long way' calculating the characteristic polynomial etc. took too long in the exam causing me to run out of time.
â Culliton Andrew
12 hours ago
Pen and paper work implies that such matrix has some particular properties that could be exploited. In this question, all-1 matrix has an easily calculated powers.
â xbh
12 hours ago
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Wondering how to find the matrix exponential of the following matrix without having to do through the long process of finding eigenvalues/eigenvectors and Jordan forms. Is there a quicker way to do it using Sine/Cosine ?
If
A = $$beginpmatrix0 & 1 & 1 & 1 \
1 & 0 & 1 & 1 \
1 & 1 & 0 & 1 \
1 & 1 & 1 & 0 \
endpmatrix$$
Find beginequation e^tA endequation
matrices differential-equations matrix-exponential
Wondering how to find the matrix exponential of the following matrix without having to do through the long process of finding eigenvalues/eigenvectors and Jordan forms. Is there a quicker way to do it using Sine/Cosine ?
If
A = $$beginpmatrix0 & 1 & 1 & 1 \
1 & 0 & 1 & 1 \
1 & 1 & 0 & 1 \
1 & 1 & 1 & 0 \
endpmatrix$$
Find beginequation e^tA endequation
matrices differential-equations matrix-exponential
asked 12 hours ago
Culliton Andrew
111
111
I'm afraid I am unfamiliar
â Culliton Andrew
12 hours ago
you want a quicker way involving only pen and paper or computer based would also work for you?
â pointguard0
12 hours ago
Apologies, I should have specified this is a question that appeared on my Differential Equations Exam so it would have to be pen and paper. I am looking for a different way to do it because the 'long way' calculating the characteristic polynomial etc. took too long in the exam causing me to run out of time.
â Culliton Andrew
12 hours ago
Pen and paper work implies that such matrix has some particular properties that could be exploited. In this question, all-1 matrix has an easily calculated powers.
â xbh
12 hours ago
add a comment |Â
I'm afraid I am unfamiliar
â Culliton Andrew
12 hours ago
you want a quicker way involving only pen and paper or computer based would also work for you?
â pointguard0
12 hours ago
Apologies, I should have specified this is a question that appeared on my Differential Equations Exam so it would have to be pen and paper. I am looking for a different way to do it because the 'long way' calculating the characteristic polynomial etc. took too long in the exam causing me to run out of time.
â Culliton Andrew
12 hours ago
Pen and paper work implies that such matrix has some particular properties that could be exploited. In this question, all-1 matrix has an easily calculated powers.
â xbh
12 hours ago
I'm afraid I am unfamiliar
â Culliton Andrew
12 hours ago
I'm afraid I am unfamiliar
â Culliton Andrew
12 hours ago
you want a quicker way involving only pen and paper or computer based would also work for you?
â pointguard0
12 hours ago
you want a quicker way involving only pen and paper or computer based would also work for you?
â pointguard0
12 hours ago
Apologies, I should have specified this is a question that appeared on my Differential Equations Exam so it would have to be pen and paper. I am looking for a different way to do it because the 'long way' calculating the characteristic polynomial etc. took too long in the exam causing me to run out of time.
â Culliton Andrew
12 hours ago
Apologies, I should have specified this is a question that appeared on my Differential Equations Exam so it would have to be pen and paper. I am looking for a different way to do it because the 'long way' calculating the characteristic polynomial etc. took too long in the exam causing me to run out of time.
â Culliton Andrew
12 hours ago
Pen and paper work implies that such matrix has some particular properties that could be exploited. In this question, all-1 matrix has an easily calculated powers.
â xbh
12 hours ago
Pen and paper work implies that such matrix has some particular properties that could be exploited. In this question, all-1 matrix has an easily calculated powers.
â xbh
12 hours ago
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
5
down vote
Let $boldsymbol A = boldsymbol U - boldsymbol I_4$. Simple calculations show that $boldsymbol U^n = 4^n-1 boldsymbol U$. Now for every $n in mathbb N^*$:
beginalign*
boldsymbol A^n =( boldsymbol U - boldsymbol I_4)^n &= sum_0^n binom n j boldsymbol U^j (-1)^n-j boldsymbol I \
&=(-1)^n boldsymbol I + sum_1^n binom n j 4^j-1(-1)^n-j boldsymbol U \
&= (-1)^nboldsymbol I + frac 14 sum_0^n binom n j 4^j (-1)^n-j boldsymbol U - (-1)^n boldsymbol U /4 \
&= frac 14 (4-1)^n boldsymbol U + (-1)^nboldsymbol I - (-1)^n boldsymbol U/4 \
&= frac 14 cdot (3^n - (-1)^n) boldsymbol U + (-1)^nboldsymbol I
endalign*
Therefore,
beginalign*
exp(tboldsymbol A) &= sum_0^infty frac 1 n! t^nboldsymbol A^n \
&= sum_0^infty frac t^n4n! (3^n boldsymbol U - (-1)^n boldsymbol U + 4(-1)^nboldsymbol I) \
&= frac 14 (mathrm e^3t - mathrm e^-t) boldsymbol U + mathrm e^-tboldsymbol I.
endalign*
1
I don't think this can be right---$frac14 e^3t bf U$ is degenerate, but the exponential of a matrix is always invertible.
â Travis
12 hours ago
1
$U^n=4^n-1U$ is not true for $n=0$ (in the summation $sum_0^n$).
â A.ÃÂ.
12 hours ago
1
@Travis Thanks, i fixed it!
â xbh
11 hours ago
@A.ÃÂ. Thanks, i fixed it!
â xbh
11 hours ago
add a comment |Â
up vote
4
down vote
Let $u$ be the $4times 1$ matrix with all entries equal to $1$. Let $u'$ be its transpose. Then
$$
beginaligned
A &=uu'-I ,\
A+I &=uu' ,\
4 &=u'u .
endaligned
$$
Then
$$
e^tA=e^-tI+t(A+I)=e^-tIcdot e^t(A+I)=e^-tcdot e^t,uu' .
$$
Now the powers of $uu'$ are easily computed. For instance $(uu')^2=uu' uu'=u u'u u'=4uu'$, inductively $(uu')^n+1=4^n, uu'$. The exponential of $t,uu'$ is then
$$
beginaligned
exp(tuu')
&=
I
+frac 11!t, uu'
+frac 12!t^2, 4, uu'
+frac 13!t^3, 4^2, uu'
+frac 14!t^4, 4^3, uu'
+frac 15!t^5, 4^4, uu'
+dots
\
&=
I
+
frac 14left(
frac 11!t, 4
+frac 12!t^2, 4^2
+frac 13!t^3, 4^3
+frac 14!t^4, 4^4
+frac 15!t^5, 4^5
+dots
right), uu'
\
&=
I +
frac 14(e^4t-1),uu'
.
endaligned
$$
The above $uu'$ is the matrix with ones as entries.
From here we get the needed formula, as confirmed by sage:
sage: A = matrix( QQ, 4,4, [0,1,1,1, 1,0,1,1, 1,1,0,1, 1,1,1,0] )
sage: A
[0 1 1 1]
[1 0 1 1]
[1 1 0 1]
[1 1 1 0]
sage: var('t');
sage: exp(t*A)
[1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
[1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
[1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
[1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t)]
sage: latex(_)
$$
left(beginarrayrrrr
frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright)
endarrayright)
$$
add a comment |Â
up vote
1
down vote
Another way to do it is to use the minimal polynomial and Lagrange interpolation. Calculating $A^2$ we notice that $A^2=3I+2A$, hence, $A^2-2A-3I=0$. It means that
$$
pi_A(x)=x^2-2x-3=(x+1)(x-3)
$$
annihilates $A$, i.e. $pi_A(A)=0$. Let's decompose the function $e^tx$ as
$$
e^tx=q(x)pi_A(x)+r(x).
$$
If we manage to do that (with $q$, $r$ analytical near zeros of $pi_A$) then
$$
e^tA=q(A)pi_A(A)+r(A)=q(A)cdot 0+r(A)=r(A).
$$
Since $pi_A$ is of degree 2 it is enough to search for $r$ of degree 1 in the form $r(x)=ax+b$. To find $a,b$ we can use interpolation conditions at $x=-1$ and $x=3$:
$$
e^-t=r(-1)=-a+b,qquad e^3t=r(3)=3a+b.
$$
Solving the system of 2 equations and 2 unknowns gives
$$
a=frace^3t-e^-t4,qquad b=frace^3t-e^-t4+e^-t,
$$
that is
$$
r(x)=ax+b=frace^3t-e^-t4(x+1)+e^-t.
$$
Finally (with $x=A$)
$$
e^tA=frace^3t-e^-t4(A+I)+e^-tI.
$$
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
5
down vote
Let $boldsymbol A = boldsymbol U - boldsymbol I_4$. Simple calculations show that $boldsymbol U^n = 4^n-1 boldsymbol U$. Now for every $n in mathbb N^*$:
beginalign*
boldsymbol A^n =( boldsymbol U - boldsymbol I_4)^n &= sum_0^n binom n j boldsymbol U^j (-1)^n-j boldsymbol I \
&=(-1)^n boldsymbol I + sum_1^n binom n j 4^j-1(-1)^n-j boldsymbol U \
&= (-1)^nboldsymbol I + frac 14 sum_0^n binom n j 4^j (-1)^n-j boldsymbol U - (-1)^n boldsymbol U /4 \
&= frac 14 (4-1)^n boldsymbol U + (-1)^nboldsymbol I - (-1)^n boldsymbol U/4 \
&= frac 14 cdot (3^n - (-1)^n) boldsymbol U + (-1)^nboldsymbol I
endalign*
Therefore,
beginalign*
exp(tboldsymbol A) &= sum_0^infty frac 1 n! t^nboldsymbol A^n \
&= sum_0^infty frac t^n4n! (3^n boldsymbol U - (-1)^n boldsymbol U + 4(-1)^nboldsymbol I) \
&= frac 14 (mathrm e^3t - mathrm e^-t) boldsymbol U + mathrm e^-tboldsymbol I.
endalign*
1
I don't think this can be right---$frac14 e^3t bf U$ is degenerate, but the exponential of a matrix is always invertible.
â Travis
12 hours ago
1
$U^n=4^n-1U$ is not true for $n=0$ (in the summation $sum_0^n$).
â A.ÃÂ.
12 hours ago
1
@Travis Thanks, i fixed it!
â xbh
11 hours ago
@A.ÃÂ. Thanks, i fixed it!
â xbh
11 hours ago
add a comment |Â
up vote
5
down vote
Let $boldsymbol A = boldsymbol U - boldsymbol I_4$. Simple calculations show that $boldsymbol U^n = 4^n-1 boldsymbol U$. Now for every $n in mathbb N^*$:
beginalign*
boldsymbol A^n =( boldsymbol U - boldsymbol I_4)^n &= sum_0^n binom n j boldsymbol U^j (-1)^n-j boldsymbol I \
&=(-1)^n boldsymbol I + sum_1^n binom n j 4^j-1(-1)^n-j boldsymbol U \
&= (-1)^nboldsymbol I + frac 14 sum_0^n binom n j 4^j (-1)^n-j boldsymbol U - (-1)^n boldsymbol U /4 \
&= frac 14 (4-1)^n boldsymbol U + (-1)^nboldsymbol I - (-1)^n boldsymbol U/4 \
&= frac 14 cdot (3^n - (-1)^n) boldsymbol U + (-1)^nboldsymbol I
endalign*
Therefore,
beginalign*
exp(tboldsymbol A) &= sum_0^infty frac 1 n! t^nboldsymbol A^n \
&= sum_0^infty frac t^n4n! (3^n boldsymbol U - (-1)^n boldsymbol U + 4(-1)^nboldsymbol I) \
&= frac 14 (mathrm e^3t - mathrm e^-t) boldsymbol U + mathrm e^-tboldsymbol I.
endalign*
1
I don't think this can be right---$frac14 e^3t bf U$ is degenerate, but the exponential of a matrix is always invertible.
â Travis
12 hours ago
1
$U^n=4^n-1U$ is not true for $n=0$ (in the summation $sum_0^n$).
â A.ÃÂ.
12 hours ago
1
@Travis Thanks, i fixed it!
â xbh
11 hours ago
@A.ÃÂ. Thanks, i fixed it!
â xbh
11 hours ago
add a comment |Â
up vote
5
down vote
up vote
5
down vote
Let $boldsymbol A = boldsymbol U - boldsymbol I_4$. Simple calculations show that $boldsymbol U^n = 4^n-1 boldsymbol U$. Now for every $n in mathbb N^*$:
beginalign*
boldsymbol A^n =( boldsymbol U - boldsymbol I_4)^n &= sum_0^n binom n j boldsymbol U^j (-1)^n-j boldsymbol I \
&=(-1)^n boldsymbol I + sum_1^n binom n j 4^j-1(-1)^n-j boldsymbol U \
&= (-1)^nboldsymbol I + frac 14 sum_0^n binom n j 4^j (-1)^n-j boldsymbol U - (-1)^n boldsymbol U /4 \
&= frac 14 (4-1)^n boldsymbol U + (-1)^nboldsymbol I - (-1)^n boldsymbol U/4 \
&= frac 14 cdot (3^n - (-1)^n) boldsymbol U + (-1)^nboldsymbol I
endalign*
Therefore,
beginalign*
exp(tboldsymbol A) &= sum_0^infty frac 1 n! t^nboldsymbol A^n \
&= sum_0^infty frac t^n4n! (3^n boldsymbol U - (-1)^n boldsymbol U + 4(-1)^nboldsymbol I) \
&= frac 14 (mathrm e^3t - mathrm e^-t) boldsymbol U + mathrm e^-tboldsymbol I.
endalign*
Let $boldsymbol A = boldsymbol U - boldsymbol I_4$. Simple calculations show that $boldsymbol U^n = 4^n-1 boldsymbol U$. Now for every $n in mathbb N^*$:
beginalign*
boldsymbol A^n =( boldsymbol U - boldsymbol I_4)^n &= sum_0^n binom n j boldsymbol U^j (-1)^n-j boldsymbol I \
&=(-1)^n boldsymbol I + sum_1^n binom n j 4^j-1(-1)^n-j boldsymbol U \
&= (-1)^nboldsymbol I + frac 14 sum_0^n binom n j 4^j (-1)^n-j boldsymbol U - (-1)^n boldsymbol U /4 \
&= frac 14 (4-1)^n boldsymbol U + (-1)^nboldsymbol I - (-1)^n boldsymbol U/4 \
&= frac 14 cdot (3^n - (-1)^n) boldsymbol U + (-1)^nboldsymbol I
endalign*
Therefore,
beginalign*
exp(tboldsymbol A) &= sum_0^infty frac 1 n! t^nboldsymbol A^n \
&= sum_0^infty frac t^n4n! (3^n boldsymbol U - (-1)^n boldsymbol U + 4(-1)^nboldsymbol I) \
&= frac 14 (mathrm e^3t - mathrm e^-t) boldsymbol U + mathrm e^-tboldsymbol I.
endalign*
edited 11 hours ago
answered 12 hours ago
xbh
7656
7656
1
I don't think this can be right---$frac14 e^3t bf U$ is degenerate, but the exponential of a matrix is always invertible.
â Travis
12 hours ago
1
$U^n=4^n-1U$ is not true for $n=0$ (in the summation $sum_0^n$).
â A.ÃÂ.
12 hours ago
1
@Travis Thanks, i fixed it!
â xbh
11 hours ago
@A.ÃÂ. Thanks, i fixed it!
â xbh
11 hours ago
add a comment |Â
1
I don't think this can be right---$frac14 e^3t bf U$ is degenerate, but the exponential of a matrix is always invertible.
â Travis
12 hours ago
1
$U^n=4^n-1U$ is not true for $n=0$ (in the summation $sum_0^n$).
â A.ÃÂ.
12 hours ago
1
@Travis Thanks, i fixed it!
â xbh
11 hours ago
@A.ÃÂ. Thanks, i fixed it!
â xbh
11 hours ago
1
1
I don't think this can be right---$frac14 e^3t bf U$ is degenerate, but the exponential of a matrix is always invertible.
â Travis
12 hours ago
I don't think this can be right---$frac14 e^3t bf U$ is degenerate, but the exponential of a matrix is always invertible.
â Travis
12 hours ago
1
1
$U^n=4^n-1U$ is not true for $n=0$ (in the summation $sum_0^n$).
â A.ÃÂ.
12 hours ago
$U^n=4^n-1U$ is not true for $n=0$ (in the summation $sum_0^n$).
â A.ÃÂ.
12 hours ago
1
1
@Travis Thanks, i fixed it!
â xbh
11 hours ago
@Travis Thanks, i fixed it!
â xbh
11 hours ago
@A.ÃÂ. Thanks, i fixed it!
â xbh
11 hours ago
@A.ÃÂ. Thanks, i fixed it!
â xbh
11 hours ago
add a comment |Â
up vote
4
down vote
Let $u$ be the $4times 1$ matrix with all entries equal to $1$. Let $u'$ be its transpose. Then
$$
beginaligned
A &=uu'-I ,\
A+I &=uu' ,\
4 &=u'u .
endaligned
$$
Then
$$
e^tA=e^-tI+t(A+I)=e^-tIcdot e^t(A+I)=e^-tcdot e^t,uu' .
$$
Now the powers of $uu'$ are easily computed. For instance $(uu')^2=uu' uu'=u u'u u'=4uu'$, inductively $(uu')^n+1=4^n, uu'$. The exponential of $t,uu'$ is then
$$
beginaligned
exp(tuu')
&=
I
+frac 11!t, uu'
+frac 12!t^2, 4, uu'
+frac 13!t^3, 4^2, uu'
+frac 14!t^4, 4^3, uu'
+frac 15!t^5, 4^4, uu'
+dots
\
&=
I
+
frac 14left(
frac 11!t, 4
+frac 12!t^2, 4^2
+frac 13!t^3, 4^3
+frac 14!t^4, 4^4
+frac 15!t^5, 4^5
+dots
right), uu'
\
&=
I +
frac 14(e^4t-1),uu'
.
endaligned
$$
The above $uu'$ is the matrix with ones as entries.
From here we get the needed formula, as confirmed by sage:
sage: A = matrix( QQ, 4,4, [0,1,1,1, 1,0,1,1, 1,1,0,1, 1,1,1,0] )
sage: A
[0 1 1 1]
[1 0 1 1]
[1 1 0 1]
[1 1 1 0]
sage: var('t');
sage: exp(t*A)
[1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
[1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
[1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
[1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t)]
sage: latex(_)
$$
left(beginarrayrrrr
frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright)
endarrayright)
$$
add a comment |Â
up vote
4
down vote
Let $u$ be the $4times 1$ matrix with all entries equal to $1$. Let $u'$ be its transpose. Then
$$
beginaligned
A &=uu'-I ,\
A+I &=uu' ,\
4 &=u'u .
endaligned
$$
Then
$$
e^tA=e^-tI+t(A+I)=e^-tIcdot e^t(A+I)=e^-tcdot e^t,uu' .
$$
Now the powers of $uu'$ are easily computed. For instance $(uu')^2=uu' uu'=u u'u u'=4uu'$, inductively $(uu')^n+1=4^n, uu'$. The exponential of $t,uu'$ is then
$$
beginaligned
exp(tuu')
&=
I
+frac 11!t, uu'
+frac 12!t^2, 4, uu'
+frac 13!t^3, 4^2, uu'
+frac 14!t^4, 4^3, uu'
+frac 15!t^5, 4^4, uu'
+dots
\
&=
I
+
frac 14left(
frac 11!t, 4
+frac 12!t^2, 4^2
+frac 13!t^3, 4^3
+frac 14!t^4, 4^4
+frac 15!t^5, 4^5
+dots
right), uu'
\
&=
I +
frac 14(e^4t-1),uu'
.
endaligned
$$
The above $uu'$ is the matrix with ones as entries.
From here we get the needed formula, as confirmed by sage:
sage: A = matrix( QQ, 4,4, [0,1,1,1, 1,0,1,1, 1,1,0,1, 1,1,1,0] )
sage: A
[0 1 1 1]
[1 0 1 1]
[1 1 0 1]
[1 1 1 0]
sage: var('t');
sage: exp(t*A)
[1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
[1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
[1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
[1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t)]
sage: latex(_)
$$
left(beginarrayrrrr
frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright)
endarrayright)
$$
add a comment |Â
up vote
4
down vote
up vote
4
down vote
Let $u$ be the $4times 1$ matrix with all entries equal to $1$. Let $u'$ be its transpose. Then
$$
beginaligned
A &=uu'-I ,\
A+I &=uu' ,\
4 &=u'u .
endaligned
$$
Then
$$
e^tA=e^-tI+t(A+I)=e^-tIcdot e^t(A+I)=e^-tcdot e^t,uu' .
$$
Now the powers of $uu'$ are easily computed. For instance $(uu')^2=uu' uu'=u u'u u'=4uu'$, inductively $(uu')^n+1=4^n, uu'$. The exponential of $t,uu'$ is then
$$
beginaligned
exp(tuu')
&=
I
+frac 11!t, uu'
+frac 12!t^2, 4, uu'
+frac 13!t^3, 4^2, uu'
+frac 14!t^4, 4^3, uu'
+frac 15!t^5, 4^4, uu'
+dots
\
&=
I
+
frac 14left(
frac 11!t, 4
+frac 12!t^2, 4^2
+frac 13!t^3, 4^3
+frac 14!t^4, 4^4
+frac 15!t^5, 4^5
+dots
right), uu'
\
&=
I +
frac 14(e^4t-1),uu'
.
endaligned
$$
The above $uu'$ is the matrix with ones as entries.
From here we get the needed formula, as confirmed by sage:
sage: A = matrix( QQ, 4,4, [0,1,1,1, 1,0,1,1, 1,1,0,1, 1,1,1,0] )
sage: A
[0 1 1 1]
[1 0 1 1]
[1 1 0 1]
[1 1 1 0]
sage: var('t');
sage: exp(t*A)
[1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
[1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
[1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
[1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t)]
sage: latex(_)
$$
left(beginarrayrrrr
frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright)
endarrayright)
$$
Let $u$ be the $4times 1$ matrix with all entries equal to $1$. Let $u'$ be its transpose. Then
$$
beginaligned
A &=uu'-I ,\
A+I &=uu' ,\
4 &=u'u .
endaligned
$$
Then
$$
e^tA=e^-tI+t(A+I)=e^-tIcdot e^t(A+I)=e^-tcdot e^t,uu' .
$$
Now the powers of $uu'$ are easily computed. For instance $(uu')^2=uu' uu'=u u'u u'=4uu'$, inductively $(uu')^n+1=4^n, uu'$. The exponential of $t,uu'$ is then
$$
beginaligned
exp(tuu')
&=
I
+frac 11!t, uu'
+frac 12!t^2, 4, uu'
+frac 13!t^3, 4^2, uu'
+frac 14!t^4, 4^3, uu'
+frac 15!t^5, 4^4, uu'
+dots
\
&=
I
+
frac 14left(
frac 11!t, 4
+frac 12!t^2, 4^2
+frac 13!t^3, 4^3
+frac 14!t^4, 4^4
+frac 15!t^5, 4^5
+dots
right), uu'
\
&=
I +
frac 14(e^4t-1),uu'
.
endaligned
$$
The above $uu'$ is the matrix with ones as entries.
From here we get the needed formula, as confirmed by sage:
sage: A = matrix( QQ, 4,4, [0,1,1,1, 1,0,1,1, 1,1,0,1, 1,1,1,0] )
sage: A
[0 1 1 1]
[1 0 1 1]
[1 1 0 1]
[1 1 1 0]
sage: var('t');
sage: exp(t*A)
[1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
[1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
[1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
[1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t)]
sage: latex(_)
$$
left(beginarrayrrrr
frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright)
endarrayright)
$$
answered 11 hours ago
dan_fulea
3,8471211
3,8471211
add a comment |Â
add a comment |Â
up vote
1
down vote
Another way to do it is to use the minimal polynomial and Lagrange interpolation. Calculating $A^2$ we notice that $A^2=3I+2A$, hence, $A^2-2A-3I=0$. It means that
$$
pi_A(x)=x^2-2x-3=(x+1)(x-3)
$$
annihilates $A$, i.e. $pi_A(A)=0$. Let's decompose the function $e^tx$ as
$$
e^tx=q(x)pi_A(x)+r(x).
$$
If we manage to do that (with $q$, $r$ analytical near zeros of $pi_A$) then
$$
e^tA=q(A)pi_A(A)+r(A)=q(A)cdot 0+r(A)=r(A).
$$
Since $pi_A$ is of degree 2 it is enough to search for $r$ of degree 1 in the form $r(x)=ax+b$. To find $a,b$ we can use interpolation conditions at $x=-1$ and $x=3$:
$$
e^-t=r(-1)=-a+b,qquad e^3t=r(3)=3a+b.
$$
Solving the system of 2 equations and 2 unknowns gives
$$
a=frace^3t-e^-t4,qquad b=frace^3t-e^-t4+e^-t,
$$
that is
$$
r(x)=ax+b=frace^3t-e^-t4(x+1)+e^-t.
$$
Finally (with $x=A$)
$$
e^tA=frace^3t-e^-t4(A+I)+e^-tI.
$$
add a comment |Â
up vote
1
down vote
Another way to do it is to use the minimal polynomial and Lagrange interpolation. Calculating $A^2$ we notice that $A^2=3I+2A$, hence, $A^2-2A-3I=0$. It means that
$$
pi_A(x)=x^2-2x-3=(x+1)(x-3)
$$
annihilates $A$, i.e. $pi_A(A)=0$. Let's decompose the function $e^tx$ as
$$
e^tx=q(x)pi_A(x)+r(x).
$$
If we manage to do that (with $q$, $r$ analytical near zeros of $pi_A$) then
$$
e^tA=q(A)pi_A(A)+r(A)=q(A)cdot 0+r(A)=r(A).
$$
Since $pi_A$ is of degree 2 it is enough to search for $r$ of degree 1 in the form $r(x)=ax+b$. To find $a,b$ we can use interpolation conditions at $x=-1$ and $x=3$:
$$
e^-t=r(-1)=-a+b,qquad e^3t=r(3)=3a+b.
$$
Solving the system of 2 equations and 2 unknowns gives
$$
a=frace^3t-e^-t4,qquad b=frace^3t-e^-t4+e^-t,
$$
that is
$$
r(x)=ax+b=frace^3t-e^-t4(x+1)+e^-t.
$$
Finally (with $x=A$)
$$
e^tA=frace^3t-e^-t4(A+I)+e^-tI.
$$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Another way to do it is to use the minimal polynomial and Lagrange interpolation. Calculating $A^2$ we notice that $A^2=3I+2A$, hence, $A^2-2A-3I=0$. It means that
$$
pi_A(x)=x^2-2x-3=(x+1)(x-3)
$$
annihilates $A$, i.e. $pi_A(A)=0$. Let's decompose the function $e^tx$ as
$$
e^tx=q(x)pi_A(x)+r(x).
$$
If we manage to do that (with $q$, $r$ analytical near zeros of $pi_A$) then
$$
e^tA=q(A)pi_A(A)+r(A)=q(A)cdot 0+r(A)=r(A).
$$
Since $pi_A$ is of degree 2 it is enough to search for $r$ of degree 1 in the form $r(x)=ax+b$. To find $a,b$ we can use interpolation conditions at $x=-1$ and $x=3$:
$$
e^-t=r(-1)=-a+b,qquad e^3t=r(3)=3a+b.
$$
Solving the system of 2 equations and 2 unknowns gives
$$
a=frace^3t-e^-t4,qquad b=frace^3t-e^-t4+e^-t,
$$
that is
$$
r(x)=ax+b=frace^3t-e^-t4(x+1)+e^-t.
$$
Finally (with $x=A$)
$$
e^tA=frace^3t-e^-t4(A+I)+e^-tI.
$$
Another way to do it is to use the minimal polynomial and Lagrange interpolation. Calculating $A^2$ we notice that $A^2=3I+2A$, hence, $A^2-2A-3I=0$. It means that
$$
pi_A(x)=x^2-2x-3=(x+1)(x-3)
$$
annihilates $A$, i.e. $pi_A(A)=0$. Let's decompose the function $e^tx$ as
$$
e^tx=q(x)pi_A(x)+r(x).
$$
If we manage to do that (with $q$, $r$ analytical near zeros of $pi_A$) then
$$
e^tA=q(A)pi_A(A)+r(A)=q(A)cdot 0+r(A)=r(A).
$$
Since $pi_A$ is of degree 2 it is enough to search for $r$ of degree 1 in the form $r(x)=ax+b$. To find $a,b$ we can use interpolation conditions at $x=-1$ and $x=3$:
$$
e^-t=r(-1)=-a+b,qquad e^3t=r(3)=3a+b.
$$
Solving the system of 2 equations and 2 unknowns gives
$$
a=frace^3t-e^-t4,qquad b=frace^3t-e^-t4+e^-t,
$$
that is
$$
r(x)=ax+b=frace^3t-e^-t4(x+1)+e^-t.
$$
Finally (with $x=A$)
$$
e^tA=frace^3t-e^-t4(A+I)+e^-tI.
$$
edited 3 hours ago
answered 10 hours ago
A.ÃÂ.
20.1k22253
20.1k22253
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2872968%2fsolving-matrix-exponential-of-4x4-matrix%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
I'm afraid I am unfamiliar
â Culliton Andrew
12 hours ago
you want a quicker way involving only pen and paper or computer based would also work for you?
â pointguard0
12 hours ago
Apologies, I should have specified this is a question that appeared on my Differential Equations Exam so it would have to be pen and paper. I am looking for a different way to do it because the 'long way' calculating the characteristic polynomial etc. took too long in the exam causing me to run out of time.
â Culliton Andrew
12 hours ago
Pen and paper work implies that such matrix has some particular properties that could be exploited. In this question, all-1 matrix has an easily calculated powers.
â xbh
12 hours ago