Solving matrix exponential of 4x4 matrix

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite
4












Wondering how to find the matrix exponential of the following matrix without having to do through the long process of finding eigenvalues/eigenvectors and Jordan forms. Is there a quicker way to do it using Sine/Cosine ?



If
A = $$beginpmatrix0 & 1 & 1 & 1 \
1 & 0 & 1 & 1 \
1 & 1 & 0 & 1 \
1 & 1 & 1 & 0 \
endpmatrix$$



Find beginequation e^tA endequation







share|cite|improve this question



















  • I'm afraid I am unfamiliar
    – Culliton Andrew
    12 hours ago










  • you want a quicker way involving only pen and paper or computer based would also work for you?
    – pointguard0
    12 hours ago










  • Apologies, I should have specified this is a question that appeared on my Differential Equations Exam so it would have to be pen and paper. I am looking for a different way to do it because the 'long way' calculating the characteristic polynomial etc. took too long in the exam causing me to run out of time.
    – Culliton Andrew
    12 hours ago










  • Pen and paper work implies that such matrix has some particular properties that could be exploited. In this question, all-1 matrix has an easily calculated powers.
    – xbh
    12 hours ago














up vote
2
down vote

favorite
4












Wondering how to find the matrix exponential of the following matrix without having to do through the long process of finding eigenvalues/eigenvectors and Jordan forms. Is there a quicker way to do it using Sine/Cosine ?



If
A = $$beginpmatrix0 & 1 & 1 & 1 \
1 & 0 & 1 & 1 \
1 & 1 & 0 & 1 \
1 & 1 & 1 & 0 \
endpmatrix$$



Find beginequation e^tA endequation







share|cite|improve this question



















  • I'm afraid I am unfamiliar
    – Culliton Andrew
    12 hours ago










  • you want a quicker way involving only pen and paper or computer based would also work for you?
    – pointguard0
    12 hours ago










  • Apologies, I should have specified this is a question that appeared on my Differential Equations Exam so it would have to be pen and paper. I am looking for a different way to do it because the 'long way' calculating the characteristic polynomial etc. took too long in the exam causing me to run out of time.
    – Culliton Andrew
    12 hours ago










  • Pen and paper work implies that such matrix has some particular properties that could be exploited. In this question, all-1 matrix has an easily calculated powers.
    – xbh
    12 hours ago












up vote
2
down vote

favorite
4









up vote
2
down vote

favorite
4






4





Wondering how to find the matrix exponential of the following matrix without having to do through the long process of finding eigenvalues/eigenvectors and Jordan forms. Is there a quicker way to do it using Sine/Cosine ?



If
A = $$beginpmatrix0 & 1 & 1 & 1 \
1 & 0 & 1 & 1 \
1 & 1 & 0 & 1 \
1 & 1 & 1 & 0 \
endpmatrix$$



Find beginequation e^tA endequation







share|cite|improve this question











Wondering how to find the matrix exponential of the following matrix without having to do through the long process of finding eigenvalues/eigenvectors and Jordan forms. Is there a quicker way to do it using Sine/Cosine ?



If
A = $$beginpmatrix0 & 1 & 1 & 1 \
1 & 0 & 1 & 1 \
1 & 1 & 0 & 1 \
1 & 1 & 1 & 0 \
endpmatrix$$



Find beginequation e^tA endequation









share|cite|improve this question










share|cite|improve this question




share|cite|improve this question









asked 12 hours ago









Culliton Andrew

111




111











  • I'm afraid I am unfamiliar
    – Culliton Andrew
    12 hours ago










  • you want a quicker way involving only pen and paper or computer based would also work for you?
    – pointguard0
    12 hours ago










  • Apologies, I should have specified this is a question that appeared on my Differential Equations Exam so it would have to be pen and paper. I am looking for a different way to do it because the 'long way' calculating the characteristic polynomial etc. took too long in the exam causing me to run out of time.
    – Culliton Andrew
    12 hours ago










  • Pen and paper work implies that such matrix has some particular properties that could be exploited. In this question, all-1 matrix has an easily calculated powers.
    – xbh
    12 hours ago
















  • I'm afraid I am unfamiliar
    – Culliton Andrew
    12 hours ago










  • you want a quicker way involving only pen and paper or computer based would also work for you?
    – pointguard0
    12 hours ago










  • Apologies, I should have specified this is a question that appeared on my Differential Equations Exam so it would have to be pen and paper. I am looking for a different way to do it because the 'long way' calculating the characteristic polynomial etc. took too long in the exam causing me to run out of time.
    – Culliton Andrew
    12 hours ago










  • Pen and paper work implies that such matrix has some particular properties that could be exploited. In this question, all-1 matrix has an easily calculated powers.
    – xbh
    12 hours ago















I'm afraid I am unfamiliar
– Culliton Andrew
12 hours ago




I'm afraid I am unfamiliar
– Culliton Andrew
12 hours ago












you want a quicker way involving only pen and paper or computer based would also work for you?
– pointguard0
12 hours ago




you want a quicker way involving only pen and paper or computer based would also work for you?
– pointguard0
12 hours ago












Apologies, I should have specified this is a question that appeared on my Differential Equations Exam so it would have to be pen and paper. I am looking for a different way to do it because the 'long way' calculating the characteristic polynomial etc. took too long in the exam causing me to run out of time.
– Culliton Andrew
12 hours ago




Apologies, I should have specified this is a question that appeared on my Differential Equations Exam so it would have to be pen and paper. I am looking for a different way to do it because the 'long way' calculating the characteristic polynomial etc. took too long in the exam causing me to run out of time.
– Culliton Andrew
12 hours ago












Pen and paper work implies that such matrix has some particular properties that could be exploited. In this question, all-1 matrix has an easily calculated powers.
– xbh
12 hours ago




Pen and paper work implies that such matrix has some particular properties that could be exploited. In this question, all-1 matrix has an easily calculated powers.
– xbh
12 hours ago










3 Answers
3






active

oldest

votes

















up vote
5
down vote













Let $boldsymbol A = boldsymbol U - boldsymbol I_4$. Simple calculations show that $boldsymbol U^n = 4^n-1 boldsymbol U$. Now for every $n in mathbb N^*$:
beginalign*
boldsymbol A^n =( boldsymbol U - boldsymbol I_4)^n &= sum_0^n binom n j boldsymbol U^j (-1)^n-j boldsymbol I \
&=(-1)^n boldsymbol I + sum_1^n binom n j 4^j-1(-1)^n-j boldsymbol U \
&= (-1)^nboldsymbol I + frac 14 sum_0^n binom n j 4^j (-1)^n-j boldsymbol U - (-1)^n boldsymbol U /4 \
&= frac 14 (4-1)^n boldsymbol U + (-1)^nboldsymbol I - (-1)^n boldsymbol U/4 \
&= frac 14 cdot (3^n - (-1)^n) boldsymbol U + (-1)^nboldsymbol I
endalign*
Therefore,
beginalign*
exp(tboldsymbol A) &= sum_0^infty frac 1 n! t^nboldsymbol A^n \
&= sum_0^infty frac t^n4n! (3^n boldsymbol U - (-1)^n boldsymbol U + 4(-1)^nboldsymbol I) \
&= frac 14 (mathrm e^3t - mathrm e^-t) boldsymbol U + mathrm e^-tboldsymbol I.
endalign*






share|cite|improve this answer



















  • 1




    I don't think this can be right---$frac14 e^3t bf U$ is degenerate, but the exponential of a matrix is always invertible.
    – Travis
    12 hours ago






  • 1




    $U^n=4^n-1U$ is not true for $n=0$ (in the summation $sum_0^n$).
    – A.Γ.
    12 hours ago







  • 1




    @Travis Thanks, i fixed it!
    – xbh
    11 hours ago










  • @A.Γ. Thanks, i fixed it!
    – xbh
    11 hours ago

















up vote
4
down vote













Let $u$ be the $4times 1$ matrix with all entries equal to $1$. Let $u'$ be its transpose. Then
$$
beginaligned
A &=uu'-I ,\
A+I &=uu' ,\
4 &=u'u .
endaligned
$$
Then
$$
e^tA=e^-tI+t(A+I)=e^-tIcdot e^t(A+I)=e^-tcdot e^t,uu' .
$$
Now the powers of $uu'$ are easily computed. For instance $(uu')^2=uu' uu'=u u'u u'=4uu'$, inductively $(uu')^n+1=4^n, uu'$. The exponential of $t,uu'$ is then
$$
beginaligned
exp(tuu')
&=
I
+frac 11!t, uu'
+frac 12!t^2, 4, uu'
+frac 13!t^3, 4^2, uu'
+frac 14!t^4, 4^3, uu'
+frac 15!t^5, 4^4, uu'
+dots
\
&=
I
+
frac 14left(
frac 11!t, 4
+frac 12!t^2, 4^2
+frac 13!t^3, 4^3
+frac 14!t^4, 4^4
+frac 15!t^5, 4^5
+dots
right), uu'
\
&=
I +
frac 14(e^4t-1),uu'
.
endaligned
$$
The above $uu'$ is the matrix with ones as entries.



From here we get the needed formula, as confirmed by sage:



sage: A = matrix( QQ, 4,4, [0,1,1,1, 1,0,1,1, 1,1,0,1, 1,1,1,0] )
sage: A
[0 1 1 1]
[1 0 1 1]
[1 1 0 1]
[1 1 1 0]
sage: var('t');
sage: exp(t*A)
[1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
[1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
[1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
[1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t)]
sage: latex(_)


$$
left(beginarrayrrrr
frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright)
endarrayright)
$$






share|cite|improve this answer




























    up vote
    1
    down vote













    Another way to do it is to use the minimal polynomial and Lagrange interpolation. Calculating $A^2$ we notice that $A^2=3I+2A$, hence, $A^2-2A-3I=0$. It means that
    $$
    pi_A(x)=x^2-2x-3=(x+1)(x-3)
    $$
    annihilates $A$, i.e. $pi_A(A)=0$. Let's decompose the function $e^tx$ as
    $$
    e^tx=q(x)pi_A(x)+r(x).
    $$
    If we manage to do that (with $q$, $r$ analytical near zeros of $pi_A$) then
    $$
    e^tA=q(A)pi_A(A)+r(A)=q(A)cdot 0+r(A)=r(A).
    $$
    Since $pi_A$ is of degree 2 it is enough to search for $r$ of degree 1 in the form $r(x)=ax+b$. To find $a,b$ we can use interpolation conditions at $x=-1$ and $x=3$:
    $$
    e^-t=r(-1)=-a+b,qquad e^3t=r(3)=3a+b.
    $$
    Solving the system of 2 equations and 2 unknowns gives
    $$
    a=frace^3t-e^-t4,qquad b=frace^3t-e^-t4+e^-t,
    $$
    that is
    $$
    r(x)=ax+b=frace^3t-e^-t4(x+1)+e^-t.
    $$
    Finally (with $x=A$)
    $$
    e^tA=frace^3t-e^-t4(A+I)+e^-tI.
    $$






    share|cite|improve this answer























      Your Answer




      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: false,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );








       

      draft saved


      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2872968%2fsolving-matrix-exponential-of-4x4-matrix%23new-answer', 'question_page');

      );

      Post as a guest






























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      5
      down vote













      Let $boldsymbol A = boldsymbol U - boldsymbol I_4$. Simple calculations show that $boldsymbol U^n = 4^n-1 boldsymbol U$. Now for every $n in mathbb N^*$:
      beginalign*
      boldsymbol A^n =( boldsymbol U - boldsymbol I_4)^n &= sum_0^n binom n j boldsymbol U^j (-1)^n-j boldsymbol I \
      &=(-1)^n boldsymbol I + sum_1^n binom n j 4^j-1(-1)^n-j boldsymbol U \
      &= (-1)^nboldsymbol I + frac 14 sum_0^n binom n j 4^j (-1)^n-j boldsymbol U - (-1)^n boldsymbol U /4 \
      &= frac 14 (4-1)^n boldsymbol U + (-1)^nboldsymbol I - (-1)^n boldsymbol U/4 \
      &= frac 14 cdot (3^n - (-1)^n) boldsymbol U + (-1)^nboldsymbol I
      endalign*
      Therefore,
      beginalign*
      exp(tboldsymbol A) &= sum_0^infty frac 1 n! t^nboldsymbol A^n \
      &= sum_0^infty frac t^n4n! (3^n boldsymbol U - (-1)^n boldsymbol U + 4(-1)^nboldsymbol I) \
      &= frac 14 (mathrm e^3t - mathrm e^-t) boldsymbol U + mathrm e^-tboldsymbol I.
      endalign*






      share|cite|improve this answer



















      • 1




        I don't think this can be right---$frac14 e^3t bf U$ is degenerate, but the exponential of a matrix is always invertible.
        – Travis
        12 hours ago






      • 1




        $U^n=4^n-1U$ is not true for $n=0$ (in the summation $sum_0^n$).
        – A.Γ.
        12 hours ago







      • 1




        @Travis Thanks, i fixed it!
        – xbh
        11 hours ago










      • @A.Γ. Thanks, i fixed it!
        – xbh
        11 hours ago














      up vote
      5
      down vote













      Let $boldsymbol A = boldsymbol U - boldsymbol I_4$. Simple calculations show that $boldsymbol U^n = 4^n-1 boldsymbol U$. Now for every $n in mathbb N^*$:
      beginalign*
      boldsymbol A^n =( boldsymbol U - boldsymbol I_4)^n &= sum_0^n binom n j boldsymbol U^j (-1)^n-j boldsymbol I \
      &=(-1)^n boldsymbol I + sum_1^n binom n j 4^j-1(-1)^n-j boldsymbol U \
      &= (-1)^nboldsymbol I + frac 14 sum_0^n binom n j 4^j (-1)^n-j boldsymbol U - (-1)^n boldsymbol U /4 \
      &= frac 14 (4-1)^n boldsymbol U + (-1)^nboldsymbol I - (-1)^n boldsymbol U/4 \
      &= frac 14 cdot (3^n - (-1)^n) boldsymbol U + (-1)^nboldsymbol I
      endalign*
      Therefore,
      beginalign*
      exp(tboldsymbol A) &= sum_0^infty frac 1 n! t^nboldsymbol A^n \
      &= sum_0^infty frac t^n4n! (3^n boldsymbol U - (-1)^n boldsymbol U + 4(-1)^nboldsymbol I) \
      &= frac 14 (mathrm e^3t - mathrm e^-t) boldsymbol U + mathrm e^-tboldsymbol I.
      endalign*






      share|cite|improve this answer



















      • 1




        I don't think this can be right---$frac14 e^3t bf U$ is degenerate, but the exponential of a matrix is always invertible.
        – Travis
        12 hours ago






      • 1




        $U^n=4^n-1U$ is not true for $n=0$ (in the summation $sum_0^n$).
        – A.Γ.
        12 hours ago







      • 1




        @Travis Thanks, i fixed it!
        – xbh
        11 hours ago










      • @A.Γ. Thanks, i fixed it!
        – xbh
        11 hours ago












      up vote
      5
      down vote










      up vote
      5
      down vote









      Let $boldsymbol A = boldsymbol U - boldsymbol I_4$. Simple calculations show that $boldsymbol U^n = 4^n-1 boldsymbol U$. Now for every $n in mathbb N^*$:
      beginalign*
      boldsymbol A^n =( boldsymbol U - boldsymbol I_4)^n &= sum_0^n binom n j boldsymbol U^j (-1)^n-j boldsymbol I \
      &=(-1)^n boldsymbol I + sum_1^n binom n j 4^j-1(-1)^n-j boldsymbol U \
      &= (-1)^nboldsymbol I + frac 14 sum_0^n binom n j 4^j (-1)^n-j boldsymbol U - (-1)^n boldsymbol U /4 \
      &= frac 14 (4-1)^n boldsymbol U + (-1)^nboldsymbol I - (-1)^n boldsymbol U/4 \
      &= frac 14 cdot (3^n - (-1)^n) boldsymbol U + (-1)^nboldsymbol I
      endalign*
      Therefore,
      beginalign*
      exp(tboldsymbol A) &= sum_0^infty frac 1 n! t^nboldsymbol A^n \
      &= sum_0^infty frac t^n4n! (3^n boldsymbol U - (-1)^n boldsymbol U + 4(-1)^nboldsymbol I) \
      &= frac 14 (mathrm e^3t - mathrm e^-t) boldsymbol U + mathrm e^-tboldsymbol I.
      endalign*






      share|cite|improve this answer















      Let $boldsymbol A = boldsymbol U - boldsymbol I_4$. Simple calculations show that $boldsymbol U^n = 4^n-1 boldsymbol U$. Now for every $n in mathbb N^*$:
      beginalign*
      boldsymbol A^n =( boldsymbol U - boldsymbol I_4)^n &= sum_0^n binom n j boldsymbol U^j (-1)^n-j boldsymbol I \
      &=(-1)^n boldsymbol I + sum_1^n binom n j 4^j-1(-1)^n-j boldsymbol U \
      &= (-1)^nboldsymbol I + frac 14 sum_0^n binom n j 4^j (-1)^n-j boldsymbol U - (-1)^n boldsymbol U /4 \
      &= frac 14 (4-1)^n boldsymbol U + (-1)^nboldsymbol I - (-1)^n boldsymbol U/4 \
      &= frac 14 cdot (3^n - (-1)^n) boldsymbol U + (-1)^nboldsymbol I
      endalign*
      Therefore,
      beginalign*
      exp(tboldsymbol A) &= sum_0^infty frac 1 n! t^nboldsymbol A^n \
      &= sum_0^infty frac t^n4n! (3^n boldsymbol U - (-1)^n boldsymbol U + 4(-1)^nboldsymbol I) \
      &= frac 14 (mathrm e^3t - mathrm e^-t) boldsymbol U + mathrm e^-tboldsymbol I.
      endalign*







      share|cite|improve this answer















      share|cite|improve this answer



      share|cite|improve this answer








      edited 11 hours ago


























      answered 12 hours ago









      xbh

      7656




      7656







      • 1




        I don't think this can be right---$frac14 e^3t bf U$ is degenerate, but the exponential of a matrix is always invertible.
        – Travis
        12 hours ago






      • 1




        $U^n=4^n-1U$ is not true for $n=0$ (in the summation $sum_0^n$).
        – A.Γ.
        12 hours ago







      • 1




        @Travis Thanks, i fixed it!
        – xbh
        11 hours ago










      • @A.Γ. Thanks, i fixed it!
        – xbh
        11 hours ago












      • 1




        I don't think this can be right---$frac14 e^3t bf U$ is degenerate, but the exponential of a matrix is always invertible.
        – Travis
        12 hours ago






      • 1




        $U^n=4^n-1U$ is not true for $n=0$ (in the summation $sum_0^n$).
        – A.Γ.
        12 hours ago







      • 1




        @Travis Thanks, i fixed it!
        – xbh
        11 hours ago










      • @A.Γ. Thanks, i fixed it!
        – xbh
        11 hours ago







      1




      1




      I don't think this can be right---$frac14 e^3t bf U$ is degenerate, but the exponential of a matrix is always invertible.
      – Travis
      12 hours ago




      I don't think this can be right---$frac14 e^3t bf U$ is degenerate, but the exponential of a matrix is always invertible.
      – Travis
      12 hours ago




      1




      1




      $U^n=4^n-1U$ is not true for $n=0$ (in the summation $sum_0^n$).
      – A.Γ.
      12 hours ago





      $U^n=4^n-1U$ is not true for $n=0$ (in the summation $sum_0^n$).
      – A.Γ.
      12 hours ago





      1




      1




      @Travis Thanks, i fixed it!
      – xbh
      11 hours ago




      @Travis Thanks, i fixed it!
      – xbh
      11 hours ago












      @A.Γ. Thanks, i fixed it!
      – xbh
      11 hours ago




      @A.Γ. Thanks, i fixed it!
      – xbh
      11 hours ago










      up vote
      4
      down vote













      Let $u$ be the $4times 1$ matrix with all entries equal to $1$. Let $u'$ be its transpose. Then
      $$
      beginaligned
      A &=uu'-I ,\
      A+I &=uu' ,\
      4 &=u'u .
      endaligned
      $$
      Then
      $$
      e^tA=e^-tI+t(A+I)=e^-tIcdot e^t(A+I)=e^-tcdot e^t,uu' .
      $$
      Now the powers of $uu'$ are easily computed. For instance $(uu')^2=uu' uu'=u u'u u'=4uu'$, inductively $(uu')^n+1=4^n, uu'$. The exponential of $t,uu'$ is then
      $$
      beginaligned
      exp(tuu')
      &=
      I
      +frac 11!t, uu'
      +frac 12!t^2, 4, uu'
      +frac 13!t^3, 4^2, uu'
      +frac 14!t^4, 4^3, uu'
      +frac 15!t^5, 4^4, uu'
      +dots
      \
      &=
      I
      +
      frac 14left(
      frac 11!t, 4
      +frac 12!t^2, 4^2
      +frac 13!t^3, 4^3
      +frac 14!t^4, 4^4
      +frac 15!t^5, 4^5
      +dots
      right), uu'
      \
      &=
      I +
      frac 14(e^4t-1),uu'
      .
      endaligned
      $$
      The above $uu'$ is the matrix with ones as entries.



      From here we get the needed formula, as confirmed by sage:



      sage: A = matrix( QQ, 4,4, [0,1,1,1, 1,0,1,1, 1,1,0,1, 1,1,1,0] )
      sage: A
      [0 1 1 1]
      [1 0 1 1]
      [1 1 0 1]
      [1 1 1 0]
      sage: var('t');
      sage: exp(t*A)
      [1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
      [1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
      [1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
      [1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t)]
      sage: latex(_)


      $$
      left(beginarrayrrrr
      frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
      frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
      frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
      frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright)
      endarrayright)
      $$






      share|cite|improve this answer

























        up vote
        4
        down vote













        Let $u$ be the $4times 1$ matrix with all entries equal to $1$. Let $u'$ be its transpose. Then
        $$
        beginaligned
        A &=uu'-I ,\
        A+I &=uu' ,\
        4 &=u'u .
        endaligned
        $$
        Then
        $$
        e^tA=e^-tI+t(A+I)=e^-tIcdot e^t(A+I)=e^-tcdot e^t,uu' .
        $$
        Now the powers of $uu'$ are easily computed. For instance $(uu')^2=uu' uu'=u u'u u'=4uu'$, inductively $(uu')^n+1=4^n, uu'$. The exponential of $t,uu'$ is then
        $$
        beginaligned
        exp(tuu')
        &=
        I
        +frac 11!t, uu'
        +frac 12!t^2, 4, uu'
        +frac 13!t^3, 4^2, uu'
        +frac 14!t^4, 4^3, uu'
        +frac 15!t^5, 4^4, uu'
        +dots
        \
        &=
        I
        +
        frac 14left(
        frac 11!t, 4
        +frac 12!t^2, 4^2
        +frac 13!t^3, 4^3
        +frac 14!t^4, 4^4
        +frac 15!t^5, 4^5
        +dots
        right), uu'
        \
        &=
        I +
        frac 14(e^4t-1),uu'
        .
        endaligned
        $$
        The above $uu'$ is the matrix with ones as entries.



        From here we get the needed formula, as confirmed by sage:



        sage: A = matrix( QQ, 4,4, [0,1,1,1, 1,0,1,1, 1,1,0,1, 1,1,1,0] )
        sage: A
        [0 1 1 1]
        [1 0 1 1]
        [1 1 0 1]
        [1 1 1 0]
        sage: var('t');
        sage: exp(t*A)
        [1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
        [1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
        [1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
        [1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t)]
        sage: latex(_)


        $$
        left(beginarrayrrrr
        frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
        frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
        frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
        frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright)
        endarrayright)
        $$






        share|cite|improve this answer























          up vote
          4
          down vote










          up vote
          4
          down vote









          Let $u$ be the $4times 1$ matrix with all entries equal to $1$. Let $u'$ be its transpose. Then
          $$
          beginaligned
          A &=uu'-I ,\
          A+I &=uu' ,\
          4 &=u'u .
          endaligned
          $$
          Then
          $$
          e^tA=e^-tI+t(A+I)=e^-tIcdot e^t(A+I)=e^-tcdot e^t,uu' .
          $$
          Now the powers of $uu'$ are easily computed. For instance $(uu')^2=uu' uu'=u u'u u'=4uu'$, inductively $(uu')^n+1=4^n, uu'$. The exponential of $t,uu'$ is then
          $$
          beginaligned
          exp(tuu')
          &=
          I
          +frac 11!t, uu'
          +frac 12!t^2, 4, uu'
          +frac 13!t^3, 4^2, uu'
          +frac 14!t^4, 4^3, uu'
          +frac 15!t^5, 4^4, uu'
          +dots
          \
          &=
          I
          +
          frac 14left(
          frac 11!t, 4
          +frac 12!t^2, 4^2
          +frac 13!t^3, 4^3
          +frac 14!t^4, 4^4
          +frac 15!t^5, 4^5
          +dots
          right), uu'
          \
          &=
          I +
          frac 14(e^4t-1),uu'
          .
          endaligned
          $$
          The above $uu'$ is the matrix with ones as entries.



          From here we get the needed formula, as confirmed by sage:



          sage: A = matrix( QQ, 4,4, [0,1,1,1, 1,0,1,1, 1,1,0,1, 1,1,1,0] )
          sage: A
          [0 1 1 1]
          [1 0 1 1]
          [1 1 0 1]
          [1 1 1 0]
          sage: var('t');
          sage: exp(t*A)
          [1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
          [1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
          [1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
          [1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t)]
          sage: latex(_)


          $$
          left(beginarrayrrrr
          frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
          frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
          frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
          frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright)
          endarrayright)
          $$






          share|cite|improve this answer













          Let $u$ be the $4times 1$ matrix with all entries equal to $1$. Let $u'$ be its transpose. Then
          $$
          beginaligned
          A &=uu'-I ,\
          A+I &=uu' ,\
          4 &=u'u .
          endaligned
          $$
          Then
          $$
          e^tA=e^-tI+t(A+I)=e^-tIcdot e^t(A+I)=e^-tcdot e^t,uu' .
          $$
          Now the powers of $uu'$ are easily computed. For instance $(uu')^2=uu' uu'=u u'u u'=4uu'$, inductively $(uu')^n+1=4^n, uu'$. The exponential of $t,uu'$ is then
          $$
          beginaligned
          exp(tuu')
          &=
          I
          +frac 11!t, uu'
          +frac 12!t^2, 4, uu'
          +frac 13!t^3, 4^2, uu'
          +frac 14!t^4, 4^3, uu'
          +frac 15!t^5, 4^4, uu'
          +dots
          \
          &=
          I
          +
          frac 14left(
          frac 11!t, 4
          +frac 12!t^2, 4^2
          +frac 13!t^3, 4^3
          +frac 14!t^4, 4^4
          +frac 15!t^5, 4^5
          +dots
          right), uu'
          \
          &=
          I +
          frac 14(e^4t-1),uu'
          .
          endaligned
          $$
          The above $uu'$ is the matrix with ones as entries.



          From here we get the needed formula, as confirmed by sage:



          sage: A = matrix( QQ, 4,4, [0,1,1,1, 1,0,1,1, 1,1,0,1, 1,1,1,0] )
          sage: A
          [0 1 1 1]
          [1 0 1 1]
          [1 1 0 1]
          [1 1 1 0]
          sage: var('t');
          sage: exp(t*A)
          [1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
          [1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
          [1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t)]
          [1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) - 1)*e^(-t) 1/4*(e^(4*t) + 3)*e^(-t)]
          sage: latex(_)


          $$
          left(beginarrayrrrr
          frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
          frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
          frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) \
          frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) - 1right) e^left(-tright) & frac14 , left(e^left(4 , tright) + 3right) e^left(-tright)
          endarrayright)
          $$







          share|cite|improve this answer













          share|cite|improve this answer



          share|cite|improve this answer











          answered 11 hours ago









          dan_fulea

          3,8471211




          3,8471211




















              up vote
              1
              down vote













              Another way to do it is to use the minimal polynomial and Lagrange interpolation. Calculating $A^2$ we notice that $A^2=3I+2A$, hence, $A^2-2A-3I=0$. It means that
              $$
              pi_A(x)=x^2-2x-3=(x+1)(x-3)
              $$
              annihilates $A$, i.e. $pi_A(A)=0$. Let's decompose the function $e^tx$ as
              $$
              e^tx=q(x)pi_A(x)+r(x).
              $$
              If we manage to do that (with $q$, $r$ analytical near zeros of $pi_A$) then
              $$
              e^tA=q(A)pi_A(A)+r(A)=q(A)cdot 0+r(A)=r(A).
              $$
              Since $pi_A$ is of degree 2 it is enough to search for $r$ of degree 1 in the form $r(x)=ax+b$. To find $a,b$ we can use interpolation conditions at $x=-1$ and $x=3$:
              $$
              e^-t=r(-1)=-a+b,qquad e^3t=r(3)=3a+b.
              $$
              Solving the system of 2 equations and 2 unknowns gives
              $$
              a=frace^3t-e^-t4,qquad b=frace^3t-e^-t4+e^-t,
              $$
              that is
              $$
              r(x)=ax+b=frace^3t-e^-t4(x+1)+e^-t.
              $$
              Finally (with $x=A$)
              $$
              e^tA=frace^3t-e^-t4(A+I)+e^-tI.
              $$






              share|cite|improve this answer



























                up vote
                1
                down vote













                Another way to do it is to use the minimal polynomial and Lagrange interpolation. Calculating $A^2$ we notice that $A^2=3I+2A$, hence, $A^2-2A-3I=0$. It means that
                $$
                pi_A(x)=x^2-2x-3=(x+1)(x-3)
                $$
                annihilates $A$, i.e. $pi_A(A)=0$. Let's decompose the function $e^tx$ as
                $$
                e^tx=q(x)pi_A(x)+r(x).
                $$
                If we manage to do that (with $q$, $r$ analytical near zeros of $pi_A$) then
                $$
                e^tA=q(A)pi_A(A)+r(A)=q(A)cdot 0+r(A)=r(A).
                $$
                Since $pi_A$ is of degree 2 it is enough to search for $r$ of degree 1 in the form $r(x)=ax+b$. To find $a,b$ we can use interpolation conditions at $x=-1$ and $x=3$:
                $$
                e^-t=r(-1)=-a+b,qquad e^3t=r(3)=3a+b.
                $$
                Solving the system of 2 equations and 2 unknowns gives
                $$
                a=frace^3t-e^-t4,qquad b=frace^3t-e^-t4+e^-t,
                $$
                that is
                $$
                r(x)=ax+b=frace^3t-e^-t4(x+1)+e^-t.
                $$
                Finally (with $x=A$)
                $$
                e^tA=frace^3t-e^-t4(A+I)+e^-tI.
                $$






                share|cite|improve this answer

























                  up vote
                  1
                  down vote










                  up vote
                  1
                  down vote









                  Another way to do it is to use the minimal polynomial and Lagrange interpolation. Calculating $A^2$ we notice that $A^2=3I+2A$, hence, $A^2-2A-3I=0$. It means that
                  $$
                  pi_A(x)=x^2-2x-3=(x+1)(x-3)
                  $$
                  annihilates $A$, i.e. $pi_A(A)=0$. Let's decompose the function $e^tx$ as
                  $$
                  e^tx=q(x)pi_A(x)+r(x).
                  $$
                  If we manage to do that (with $q$, $r$ analytical near zeros of $pi_A$) then
                  $$
                  e^tA=q(A)pi_A(A)+r(A)=q(A)cdot 0+r(A)=r(A).
                  $$
                  Since $pi_A$ is of degree 2 it is enough to search for $r$ of degree 1 in the form $r(x)=ax+b$. To find $a,b$ we can use interpolation conditions at $x=-1$ and $x=3$:
                  $$
                  e^-t=r(-1)=-a+b,qquad e^3t=r(3)=3a+b.
                  $$
                  Solving the system of 2 equations and 2 unknowns gives
                  $$
                  a=frace^3t-e^-t4,qquad b=frace^3t-e^-t4+e^-t,
                  $$
                  that is
                  $$
                  r(x)=ax+b=frace^3t-e^-t4(x+1)+e^-t.
                  $$
                  Finally (with $x=A$)
                  $$
                  e^tA=frace^3t-e^-t4(A+I)+e^-tI.
                  $$






                  share|cite|improve this answer















                  Another way to do it is to use the minimal polynomial and Lagrange interpolation. Calculating $A^2$ we notice that $A^2=3I+2A$, hence, $A^2-2A-3I=0$. It means that
                  $$
                  pi_A(x)=x^2-2x-3=(x+1)(x-3)
                  $$
                  annihilates $A$, i.e. $pi_A(A)=0$. Let's decompose the function $e^tx$ as
                  $$
                  e^tx=q(x)pi_A(x)+r(x).
                  $$
                  If we manage to do that (with $q$, $r$ analytical near zeros of $pi_A$) then
                  $$
                  e^tA=q(A)pi_A(A)+r(A)=q(A)cdot 0+r(A)=r(A).
                  $$
                  Since $pi_A$ is of degree 2 it is enough to search for $r$ of degree 1 in the form $r(x)=ax+b$. To find $a,b$ we can use interpolation conditions at $x=-1$ and $x=3$:
                  $$
                  e^-t=r(-1)=-a+b,qquad e^3t=r(3)=3a+b.
                  $$
                  Solving the system of 2 equations and 2 unknowns gives
                  $$
                  a=frace^3t-e^-t4,qquad b=frace^3t-e^-t4+e^-t,
                  $$
                  that is
                  $$
                  r(x)=ax+b=frace^3t-e^-t4(x+1)+e^-t.
                  $$
                  Finally (with $x=A$)
                  $$
                  e^tA=frace^3t-e^-t4(A+I)+e^-tI.
                  $$







                  share|cite|improve this answer















                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 3 hours ago


























                  answered 10 hours ago









                  A.Γ.

                  20.1k22253




                  20.1k22253






















                       

                      draft saved


                      draft discarded


























                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2872968%2fsolving-matrix-exponential-of-4x4-matrix%23new-answer', 'question_page');

                      );

                      Post as a guest













































































                      Comments

                      Popular posts from this blog

                      What is the equation of a 3D cone with generalised tilt?

                      Color the edges and diagonals of a regular polygon

                      Relationship between determinant of matrix and determinant of adjoint?