Implications of Convergence of a Series

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












Let us say that:
$$
sum_k = 1^infty fraca_kk^2 <infty
$$
Where the $a_k geq 0$. Can we say anything about what the limit:
$$
lim_nto infty sum_k = 1^nfraca_kn^2
$$
converges to? I know the limit converges by the comparison test, but is there anything we can say about its value?







share|cite|improve this question

















  • 1




    A great way to find the sum of an infinite series is making a telescopic series. See if this helps.
    – Anik Bhowmick
    3 hours ago














up vote
1
down vote

favorite












Let us say that:
$$
sum_k = 1^infty fraca_kk^2 <infty
$$
Where the $a_k geq 0$. Can we say anything about what the limit:
$$
lim_nto infty sum_k = 1^nfraca_kn^2
$$
converges to? I know the limit converges by the comparison test, but is there anything we can say about its value?







share|cite|improve this question

















  • 1




    A great way to find the sum of an infinite series is making a telescopic series. See if this helps.
    – Anik Bhowmick
    3 hours ago












up vote
1
down vote

favorite









up vote
1
down vote

favorite











Let us say that:
$$
sum_k = 1^infty fraca_kk^2 <infty
$$
Where the $a_k geq 0$. Can we say anything about what the limit:
$$
lim_nto infty sum_k = 1^nfraca_kn^2
$$
converges to? I know the limit converges by the comparison test, but is there anything we can say about its value?







share|cite|improve this question













Let us say that:
$$
sum_k = 1^infty fraca_kk^2 <infty
$$
Where the $a_k geq 0$. Can we say anything about what the limit:
$$
lim_nto infty sum_k = 1^nfraca_kn^2
$$
converges to? I know the limit converges by the comparison test, but is there anything we can say about its value?









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited 3 hours ago









TheSimpliFire

9,17651651




9,17651651









asked 3 hours ago









rubikscube09

843516




843516







  • 1




    A great way to find the sum of an infinite series is making a telescopic series. See if this helps.
    – Anik Bhowmick
    3 hours ago












  • 1




    A great way to find the sum of an infinite series is making a telescopic series. See if this helps.
    – Anik Bhowmick
    3 hours ago







1




1




A great way to find the sum of an infinite series is making a telescopic series. See if this helps.
– Anik Bhowmick
3 hours ago




A great way to find the sum of an infinite series is making a telescopic series. See if this helps.
– Anik Bhowmick
3 hours ago










2 Answers
2






active

oldest

votes

















up vote
0
down vote













Let $s_n=sum_k=1^na_k$.
By Stolz–Cesàro theorem, we have
beginalign
lim_ntoinftyfrac 1n^2sum_k=1^na_k
&=lim_ntoinftyfracs_nn^2\
&=lim_ntoinftyfracs_n+1-s_n(n+1)^2-n^2\
&=lim_ntoinftyfraca_n+12n+1\
&=frac 12lim_ntoinftyfraca_n+1n+1\
&=frac 12lim_ntoinftyfraca_n+1-a_n(n+1)-n\
&=frac 12lim_ntoinfty(a_n+1-a_n)
endalign
provided that the last limit exists.






share|cite|improve this answer























  • If $L=lim_nto infty frac a_n+1n+1$ exists then $L= 0.$ Because if $L>0$ then $a_k/k>L/2$ and hence $a_k/k^2>L/2k$ for all but finitely many $k,$ implying that $sum_ka_k/k^2$ diverges
    – DanielWainfleet
    1 hour ago


















up vote
0
down vote













Let $S_n = sum_k=1^n fraca_kk^2$ where $lim_n to inftyS_n = S$.



Summing by parts we get



$$sum_k=1^n a_k = sum_k=1^n k^2 fraca_kk^2 = n^2S_n + sum_k=1^n-1S_k left(k^2 - (k+1)^2 right),$$



and



$$frac1n^2sum_k=1^n a_k = S_n - frac1n^2sum_k=1^n-1(2k+1)S_k$$



The first term on the RHS converges to $S$ and the second term on the RHS converges to $S$ by Stolz-Cesaro:



$$lim_n to inftyfrac1n^2sum_k=1^n-1(2k+1)S_k = lim_n to inftyfrac(2n+1)S_n(n+1)^2 - n^2 = lim_n to inftyS_n = S$$



Hence,



$$lim_n to infty frac1n^2sum_k=1^n a_k = 0$$






share|cite|improve this answer























    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2873259%2fimplications-of-convergence-of-a-series%23new-answer', 'question_page');

    );

    Post as a guest






























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote













    Let $s_n=sum_k=1^na_k$.
    By Stolz–Cesàro theorem, we have
    beginalign
    lim_ntoinftyfrac 1n^2sum_k=1^na_k
    &=lim_ntoinftyfracs_nn^2\
    &=lim_ntoinftyfracs_n+1-s_n(n+1)^2-n^2\
    &=lim_ntoinftyfraca_n+12n+1\
    &=frac 12lim_ntoinftyfraca_n+1n+1\
    &=frac 12lim_ntoinftyfraca_n+1-a_n(n+1)-n\
    &=frac 12lim_ntoinfty(a_n+1-a_n)
    endalign
    provided that the last limit exists.






    share|cite|improve this answer























    • If $L=lim_nto infty frac a_n+1n+1$ exists then $L= 0.$ Because if $L>0$ then $a_k/k>L/2$ and hence $a_k/k^2>L/2k$ for all but finitely many $k,$ implying that $sum_ka_k/k^2$ diverges
      – DanielWainfleet
      1 hour ago















    up vote
    0
    down vote













    Let $s_n=sum_k=1^na_k$.
    By Stolz–Cesàro theorem, we have
    beginalign
    lim_ntoinftyfrac 1n^2sum_k=1^na_k
    &=lim_ntoinftyfracs_nn^2\
    &=lim_ntoinftyfracs_n+1-s_n(n+1)^2-n^2\
    &=lim_ntoinftyfraca_n+12n+1\
    &=frac 12lim_ntoinftyfraca_n+1n+1\
    &=frac 12lim_ntoinftyfraca_n+1-a_n(n+1)-n\
    &=frac 12lim_ntoinfty(a_n+1-a_n)
    endalign
    provided that the last limit exists.






    share|cite|improve this answer























    • If $L=lim_nto infty frac a_n+1n+1$ exists then $L= 0.$ Because if $L>0$ then $a_k/k>L/2$ and hence $a_k/k^2>L/2k$ for all but finitely many $k,$ implying that $sum_ka_k/k^2$ diverges
      – DanielWainfleet
      1 hour ago













    up vote
    0
    down vote










    up vote
    0
    down vote









    Let $s_n=sum_k=1^na_k$.
    By Stolz–Cesàro theorem, we have
    beginalign
    lim_ntoinftyfrac 1n^2sum_k=1^na_k
    &=lim_ntoinftyfracs_nn^2\
    &=lim_ntoinftyfracs_n+1-s_n(n+1)^2-n^2\
    &=lim_ntoinftyfraca_n+12n+1\
    &=frac 12lim_ntoinftyfraca_n+1n+1\
    &=frac 12lim_ntoinftyfraca_n+1-a_n(n+1)-n\
    &=frac 12lim_ntoinfty(a_n+1-a_n)
    endalign
    provided that the last limit exists.






    share|cite|improve this answer















    Let $s_n=sum_k=1^na_k$.
    By Stolz–Cesàro theorem, we have
    beginalign
    lim_ntoinftyfrac 1n^2sum_k=1^na_k
    &=lim_ntoinftyfracs_nn^2\
    &=lim_ntoinftyfracs_n+1-s_n(n+1)^2-n^2\
    &=lim_ntoinftyfraca_n+12n+1\
    &=frac 12lim_ntoinftyfraca_n+1n+1\
    &=frac 12lim_ntoinftyfraca_n+1-a_n(n+1)-n\
    &=frac 12lim_ntoinfty(a_n+1-a_n)
    endalign
    provided that the last limit exists.







    share|cite|improve this answer















    share|cite|improve this answer



    share|cite|improve this answer








    edited 2 hours ago


























    answered 3 hours ago









    Fabio Lucchini

    5,55411025




    5,55411025











    • If $L=lim_nto infty frac a_n+1n+1$ exists then $L= 0.$ Because if $L>0$ then $a_k/k>L/2$ and hence $a_k/k^2>L/2k$ for all but finitely many $k,$ implying that $sum_ka_k/k^2$ diverges
      – DanielWainfleet
      1 hour ago

















    • If $L=lim_nto infty frac a_n+1n+1$ exists then $L= 0.$ Because if $L>0$ then $a_k/k>L/2$ and hence $a_k/k^2>L/2k$ for all but finitely many $k,$ implying that $sum_ka_k/k^2$ diverges
      – DanielWainfleet
      1 hour ago
















    If $L=lim_nto infty frac a_n+1n+1$ exists then $L= 0.$ Because if $L>0$ then $a_k/k>L/2$ and hence $a_k/k^2>L/2k$ for all but finitely many $k,$ implying that $sum_ka_k/k^2$ diverges
    – DanielWainfleet
    1 hour ago





    If $L=lim_nto infty frac a_n+1n+1$ exists then $L= 0.$ Because if $L>0$ then $a_k/k>L/2$ and hence $a_k/k^2>L/2k$ for all but finitely many $k,$ implying that $sum_ka_k/k^2$ diverges
    – DanielWainfleet
    1 hour ago











    up vote
    0
    down vote













    Let $S_n = sum_k=1^n fraca_kk^2$ where $lim_n to inftyS_n = S$.



    Summing by parts we get



    $$sum_k=1^n a_k = sum_k=1^n k^2 fraca_kk^2 = n^2S_n + sum_k=1^n-1S_k left(k^2 - (k+1)^2 right),$$



    and



    $$frac1n^2sum_k=1^n a_k = S_n - frac1n^2sum_k=1^n-1(2k+1)S_k$$



    The first term on the RHS converges to $S$ and the second term on the RHS converges to $S$ by Stolz-Cesaro:



    $$lim_n to inftyfrac1n^2sum_k=1^n-1(2k+1)S_k = lim_n to inftyfrac(2n+1)S_n(n+1)^2 - n^2 = lim_n to inftyS_n = S$$



    Hence,



    $$lim_n to infty frac1n^2sum_k=1^n a_k = 0$$






    share|cite|improve this answer



























      up vote
      0
      down vote













      Let $S_n = sum_k=1^n fraca_kk^2$ where $lim_n to inftyS_n = S$.



      Summing by parts we get



      $$sum_k=1^n a_k = sum_k=1^n k^2 fraca_kk^2 = n^2S_n + sum_k=1^n-1S_k left(k^2 - (k+1)^2 right),$$



      and



      $$frac1n^2sum_k=1^n a_k = S_n - frac1n^2sum_k=1^n-1(2k+1)S_k$$



      The first term on the RHS converges to $S$ and the second term on the RHS converges to $S$ by Stolz-Cesaro:



      $$lim_n to inftyfrac1n^2sum_k=1^n-1(2k+1)S_k = lim_n to inftyfrac(2n+1)S_n(n+1)^2 - n^2 = lim_n to inftyS_n = S$$



      Hence,



      $$lim_n to infty frac1n^2sum_k=1^n a_k = 0$$






      share|cite|improve this answer

























        up vote
        0
        down vote










        up vote
        0
        down vote









        Let $S_n = sum_k=1^n fraca_kk^2$ where $lim_n to inftyS_n = S$.



        Summing by parts we get



        $$sum_k=1^n a_k = sum_k=1^n k^2 fraca_kk^2 = n^2S_n + sum_k=1^n-1S_k left(k^2 - (k+1)^2 right),$$



        and



        $$frac1n^2sum_k=1^n a_k = S_n - frac1n^2sum_k=1^n-1(2k+1)S_k$$



        The first term on the RHS converges to $S$ and the second term on the RHS converges to $S$ by Stolz-Cesaro:



        $$lim_n to inftyfrac1n^2sum_k=1^n-1(2k+1)S_k = lim_n to inftyfrac(2n+1)S_n(n+1)^2 - n^2 = lim_n to inftyS_n = S$$



        Hence,



        $$lim_n to infty frac1n^2sum_k=1^n a_k = 0$$






        share|cite|improve this answer















        Let $S_n = sum_k=1^n fraca_kk^2$ where $lim_n to inftyS_n = S$.



        Summing by parts we get



        $$sum_k=1^n a_k = sum_k=1^n k^2 fraca_kk^2 = n^2S_n + sum_k=1^n-1S_k left(k^2 - (k+1)^2 right),$$



        and



        $$frac1n^2sum_k=1^n a_k = S_n - frac1n^2sum_k=1^n-1(2k+1)S_k$$



        The first term on the RHS converges to $S$ and the second term on the RHS converges to $S$ by Stolz-Cesaro:



        $$lim_n to inftyfrac1n^2sum_k=1^n-1(2k+1)S_k = lim_n to inftyfrac(2n+1)S_n(n+1)^2 - n^2 = lim_n to inftyS_n = S$$



        Hence,



        $$lim_n to infty frac1n^2sum_k=1^n a_k = 0$$







        share|cite|improve this answer















        share|cite|improve this answer



        share|cite|improve this answer








        edited 47 mins ago


























        answered 1 hour ago









        RRL

        43.3k42160




        43.3k42160






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2873259%2fimplications-of-convergence-of-a-series%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What is the equation of a 3D cone with generalised tilt?

            Color the edges and diagonals of a regular polygon

            Relationship between determinant of matrix and determinant of adjoint?