Implications of Convergence of a Series
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
Let us say that:
$$
sum_k = 1^infty fraca_kk^2 <infty
$$
Where the $a_k geq 0$. Can we say anything about what the limit:
$$
lim_nto infty sum_k = 1^nfraca_kn^2
$$
converges to? I know the limit converges by the comparison test, but is there anything we can say about its value?
real-analysis sequences-and-series limits
add a comment |Â
up vote
1
down vote
favorite
Let us say that:
$$
sum_k = 1^infty fraca_kk^2 <infty
$$
Where the $a_k geq 0$. Can we say anything about what the limit:
$$
lim_nto infty sum_k = 1^nfraca_kn^2
$$
converges to? I know the limit converges by the comparison test, but is there anything we can say about its value?
real-analysis sequences-and-series limits
1
A great way to find the sum of an infinite series is making a telescopic series. See if this helps.
– Anik Bhowmick
3 hours ago
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Let us say that:
$$
sum_k = 1^infty fraca_kk^2 <infty
$$
Where the $a_k geq 0$. Can we say anything about what the limit:
$$
lim_nto infty sum_k = 1^nfraca_kn^2
$$
converges to? I know the limit converges by the comparison test, but is there anything we can say about its value?
real-analysis sequences-and-series limits
Let us say that:
$$
sum_k = 1^infty fraca_kk^2 <infty
$$
Where the $a_k geq 0$. Can we say anything about what the limit:
$$
lim_nto infty sum_k = 1^nfraca_kn^2
$$
converges to? I know the limit converges by the comparison test, but is there anything we can say about its value?
real-analysis sequences-and-series limits
edited 3 hours ago
TheSimpliFire
9,17651651
9,17651651
asked 3 hours ago


rubikscube09
843516
843516
1
A great way to find the sum of an infinite series is making a telescopic series. See if this helps.
– Anik Bhowmick
3 hours ago
add a comment |Â
1
A great way to find the sum of an infinite series is making a telescopic series. See if this helps.
– Anik Bhowmick
3 hours ago
1
1
A great way to find the sum of an infinite series is making a telescopic series. See if this helps.
– Anik Bhowmick
3 hours ago
A great way to find the sum of an infinite series is making a telescopic series. See if this helps.
– Anik Bhowmick
3 hours ago
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
0
down vote
Let $s_n=sum_k=1^na_k$.
By Stolz–Cesàro theorem, we have
beginalign
lim_ntoinftyfrac 1n^2sum_k=1^na_k
&=lim_ntoinftyfracs_nn^2\
&=lim_ntoinftyfracs_n+1-s_n(n+1)^2-n^2\
&=lim_ntoinftyfraca_n+12n+1\
&=frac 12lim_ntoinftyfraca_n+1n+1\
&=frac 12lim_ntoinftyfraca_n+1-a_n(n+1)-n\
&=frac 12lim_ntoinfty(a_n+1-a_n)
endalign
provided that the last limit exists.
If $L=lim_nto infty frac a_n+1n+1$ exists then $L= 0.$ Because if $L>0$ then $a_k/k>L/2$ and hence $a_k/k^2>L/2k$ for all but finitely many $k,$ implying that $sum_ka_k/k^2$ diverges
– DanielWainfleet
1 hour ago
add a comment |Â
up vote
0
down vote
Let $S_n = sum_k=1^n fraca_kk^2$ where $lim_n to inftyS_n = S$.
Summing by parts we get
$$sum_k=1^n a_k = sum_k=1^n k^2 fraca_kk^2 = n^2S_n + sum_k=1^n-1S_k left(k^2 - (k+1)^2 right),$$
and
$$frac1n^2sum_k=1^n a_k = S_n - frac1n^2sum_k=1^n-1(2k+1)S_k$$
The first term on the RHS converges to $S$ and the second term on the RHS converges to $S$ by Stolz-Cesaro:
$$lim_n to inftyfrac1n^2sum_k=1^n-1(2k+1)S_k = lim_n to inftyfrac(2n+1)S_n(n+1)^2 - n^2 = lim_n to inftyS_n = S$$
Hence,
$$lim_n to infty frac1n^2sum_k=1^n a_k = 0$$
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
Let $s_n=sum_k=1^na_k$.
By Stolz–Cesàro theorem, we have
beginalign
lim_ntoinftyfrac 1n^2sum_k=1^na_k
&=lim_ntoinftyfracs_nn^2\
&=lim_ntoinftyfracs_n+1-s_n(n+1)^2-n^2\
&=lim_ntoinftyfraca_n+12n+1\
&=frac 12lim_ntoinftyfraca_n+1n+1\
&=frac 12lim_ntoinftyfraca_n+1-a_n(n+1)-n\
&=frac 12lim_ntoinfty(a_n+1-a_n)
endalign
provided that the last limit exists.
If $L=lim_nto infty frac a_n+1n+1$ exists then $L= 0.$ Because if $L>0$ then $a_k/k>L/2$ and hence $a_k/k^2>L/2k$ for all but finitely many $k,$ implying that $sum_ka_k/k^2$ diverges
– DanielWainfleet
1 hour ago
add a comment |Â
up vote
0
down vote
Let $s_n=sum_k=1^na_k$.
By Stolz–Cesàro theorem, we have
beginalign
lim_ntoinftyfrac 1n^2sum_k=1^na_k
&=lim_ntoinftyfracs_nn^2\
&=lim_ntoinftyfracs_n+1-s_n(n+1)^2-n^2\
&=lim_ntoinftyfraca_n+12n+1\
&=frac 12lim_ntoinftyfraca_n+1n+1\
&=frac 12lim_ntoinftyfraca_n+1-a_n(n+1)-n\
&=frac 12lim_ntoinfty(a_n+1-a_n)
endalign
provided that the last limit exists.
If $L=lim_nto infty frac a_n+1n+1$ exists then $L= 0.$ Because if $L>0$ then $a_k/k>L/2$ and hence $a_k/k^2>L/2k$ for all but finitely many $k,$ implying that $sum_ka_k/k^2$ diverges
– DanielWainfleet
1 hour ago
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Let $s_n=sum_k=1^na_k$.
By Stolz–Cesàro theorem, we have
beginalign
lim_ntoinftyfrac 1n^2sum_k=1^na_k
&=lim_ntoinftyfracs_nn^2\
&=lim_ntoinftyfracs_n+1-s_n(n+1)^2-n^2\
&=lim_ntoinftyfraca_n+12n+1\
&=frac 12lim_ntoinftyfraca_n+1n+1\
&=frac 12lim_ntoinftyfraca_n+1-a_n(n+1)-n\
&=frac 12lim_ntoinfty(a_n+1-a_n)
endalign
provided that the last limit exists.
Let $s_n=sum_k=1^na_k$.
By Stolz–Cesàro theorem, we have
beginalign
lim_ntoinftyfrac 1n^2sum_k=1^na_k
&=lim_ntoinftyfracs_nn^2\
&=lim_ntoinftyfracs_n+1-s_n(n+1)^2-n^2\
&=lim_ntoinftyfraca_n+12n+1\
&=frac 12lim_ntoinftyfraca_n+1n+1\
&=frac 12lim_ntoinftyfraca_n+1-a_n(n+1)-n\
&=frac 12lim_ntoinfty(a_n+1-a_n)
endalign
provided that the last limit exists.
edited 2 hours ago
answered 3 hours ago
Fabio Lucchini
5,55411025
5,55411025
If $L=lim_nto infty frac a_n+1n+1$ exists then $L= 0.$ Because if $L>0$ then $a_k/k>L/2$ and hence $a_k/k^2>L/2k$ for all but finitely many $k,$ implying that $sum_ka_k/k^2$ diverges
– DanielWainfleet
1 hour ago
add a comment |Â
If $L=lim_nto infty frac a_n+1n+1$ exists then $L= 0.$ Because if $L>0$ then $a_k/k>L/2$ and hence $a_k/k^2>L/2k$ for all but finitely many $k,$ implying that $sum_ka_k/k^2$ diverges
– DanielWainfleet
1 hour ago
If $L=lim_nto infty frac a_n+1n+1$ exists then $L= 0.$ Because if $L>0$ then $a_k/k>L/2$ and hence $a_k/k^2>L/2k$ for all but finitely many $k,$ implying that $sum_ka_k/k^2$ diverges
– DanielWainfleet
1 hour ago
If $L=lim_nto infty frac a_n+1n+1$ exists then $L= 0.$ Because if $L>0$ then $a_k/k>L/2$ and hence $a_k/k^2>L/2k$ for all but finitely many $k,$ implying that $sum_ka_k/k^2$ diverges
– DanielWainfleet
1 hour ago
add a comment |Â
up vote
0
down vote
Let $S_n = sum_k=1^n fraca_kk^2$ where $lim_n to inftyS_n = S$.
Summing by parts we get
$$sum_k=1^n a_k = sum_k=1^n k^2 fraca_kk^2 = n^2S_n + sum_k=1^n-1S_k left(k^2 - (k+1)^2 right),$$
and
$$frac1n^2sum_k=1^n a_k = S_n - frac1n^2sum_k=1^n-1(2k+1)S_k$$
The first term on the RHS converges to $S$ and the second term on the RHS converges to $S$ by Stolz-Cesaro:
$$lim_n to inftyfrac1n^2sum_k=1^n-1(2k+1)S_k = lim_n to inftyfrac(2n+1)S_n(n+1)^2 - n^2 = lim_n to inftyS_n = S$$
Hence,
$$lim_n to infty frac1n^2sum_k=1^n a_k = 0$$
add a comment |Â
up vote
0
down vote
Let $S_n = sum_k=1^n fraca_kk^2$ where $lim_n to inftyS_n = S$.
Summing by parts we get
$$sum_k=1^n a_k = sum_k=1^n k^2 fraca_kk^2 = n^2S_n + sum_k=1^n-1S_k left(k^2 - (k+1)^2 right),$$
and
$$frac1n^2sum_k=1^n a_k = S_n - frac1n^2sum_k=1^n-1(2k+1)S_k$$
The first term on the RHS converges to $S$ and the second term on the RHS converges to $S$ by Stolz-Cesaro:
$$lim_n to inftyfrac1n^2sum_k=1^n-1(2k+1)S_k = lim_n to inftyfrac(2n+1)S_n(n+1)^2 - n^2 = lim_n to inftyS_n = S$$
Hence,
$$lim_n to infty frac1n^2sum_k=1^n a_k = 0$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Let $S_n = sum_k=1^n fraca_kk^2$ where $lim_n to inftyS_n = S$.
Summing by parts we get
$$sum_k=1^n a_k = sum_k=1^n k^2 fraca_kk^2 = n^2S_n + sum_k=1^n-1S_k left(k^2 - (k+1)^2 right),$$
and
$$frac1n^2sum_k=1^n a_k = S_n - frac1n^2sum_k=1^n-1(2k+1)S_k$$
The first term on the RHS converges to $S$ and the second term on the RHS converges to $S$ by Stolz-Cesaro:
$$lim_n to inftyfrac1n^2sum_k=1^n-1(2k+1)S_k = lim_n to inftyfrac(2n+1)S_n(n+1)^2 - n^2 = lim_n to inftyS_n = S$$
Hence,
$$lim_n to infty frac1n^2sum_k=1^n a_k = 0$$
Let $S_n = sum_k=1^n fraca_kk^2$ where $lim_n to inftyS_n = S$.
Summing by parts we get
$$sum_k=1^n a_k = sum_k=1^n k^2 fraca_kk^2 = n^2S_n + sum_k=1^n-1S_k left(k^2 - (k+1)^2 right),$$
and
$$frac1n^2sum_k=1^n a_k = S_n - frac1n^2sum_k=1^n-1(2k+1)S_k$$
The first term on the RHS converges to $S$ and the second term on the RHS converges to $S$ by Stolz-Cesaro:
$$lim_n to inftyfrac1n^2sum_k=1^n-1(2k+1)S_k = lim_n to inftyfrac(2n+1)S_n(n+1)^2 - n^2 = lim_n to inftyS_n = S$$
Hence,
$$lim_n to infty frac1n^2sum_k=1^n a_k = 0$$
edited 47 mins ago
answered 1 hour ago
RRL
43.3k42160
43.3k42160
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2873259%2fimplications-of-convergence-of-a-series%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
1
A great way to find the sum of an infinite series is making a telescopic series. See if this helps.
– Anik Bhowmick
3 hours ago