$X$ ~ $N(u, sigma^2)$. Find $E(X)$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












$X$ ~ $N(u, sigma^2)$. Find $E(X)$



We know that $f_X(x) = frac1sigmasqrt2pie^-frac12left(fracx-usigma right)^2$



Also,



$Z = fracX-usigma$ ~ $N(0, 1)$, so $f_Z(z) = frac1sqrt2pie^-frac12z^2$



$E(Z) = Eleft[fracXsigma - fracusigma right] = frac1sigmaE(X) + fracusigmaE(1) = E(X) = u$



Therefore $E(X) = u$ for $X$ ~ $N(u, sigma^2)$



I don't get it. The part where "$frac1sigmaE(X) + fracusigmaE(1) = E(X) = u$"



I'm aware that $X$ ~ $N(0, 1)$, $E(X) = 0$.







share|cite|improve this question





















  • The Line $E(Z)=E[fracXsigma-fracusigma]$ is wrong. The rest of the line should be $frac1sigmaE(X)-fracusigma=0$.
    – herb steinberg
    3 hours ago











  • Why not perform the integration $int_-infty^inftyxf_X(x),dx$?
    – StubbornAtom
    3 hours ago















up vote
0
down vote

favorite












$X$ ~ $N(u, sigma^2)$. Find $E(X)$



We know that $f_X(x) = frac1sigmasqrt2pie^-frac12left(fracx-usigma right)^2$



Also,



$Z = fracX-usigma$ ~ $N(0, 1)$, so $f_Z(z) = frac1sqrt2pie^-frac12z^2$



$E(Z) = Eleft[fracXsigma - fracusigma right] = frac1sigmaE(X) + fracusigmaE(1) = E(X) = u$



Therefore $E(X) = u$ for $X$ ~ $N(u, sigma^2)$



I don't get it. The part where "$frac1sigmaE(X) + fracusigmaE(1) = E(X) = u$"



I'm aware that $X$ ~ $N(0, 1)$, $E(X) = 0$.







share|cite|improve this question





















  • The Line $E(Z)=E[fracXsigma-fracusigma]$ is wrong. The rest of the line should be $frac1sigmaE(X)-fracusigma=0$.
    – herb steinberg
    3 hours ago











  • Why not perform the integration $int_-infty^inftyxf_X(x),dx$?
    – StubbornAtom
    3 hours ago













up vote
0
down vote

favorite









up vote
0
down vote

favorite











$X$ ~ $N(u, sigma^2)$. Find $E(X)$



We know that $f_X(x) = frac1sigmasqrt2pie^-frac12left(fracx-usigma right)^2$



Also,



$Z = fracX-usigma$ ~ $N(0, 1)$, so $f_Z(z) = frac1sqrt2pie^-frac12z^2$



$E(Z) = Eleft[fracXsigma - fracusigma right] = frac1sigmaE(X) + fracusigmaE(1) = E(X) = u$



Therefore $E(X) = u$ for $X$ ~ $N(u, sigma^2)$



I don't get it. The part where "$frac1sigmaE(X) + fracusigmaE(1) = E(X) = u$"



I'm aware that $X$ ~ $N(0, 1)$, $E(X) = 0$.







share|cite|improve this question













$X$ ~ $N(u, sigma^2)$. Find $E(X)$



We know that $f_X(x) = frac1sigmasqrt2pie^-frac12left(fracx-usigma right)^2$



Also,



$Z = fracX-usigma$ ~ $N(0, 1)$, so $f_Z(z) = frac1sqrt2pie^-frac12z^2$



$E(Z) = Eleft[fracXsigma - fracusigma right] = frac1sigmaE(X) + fracusigmaE(1) = E(X) = u$



Therefore $E(X) = u$ for $X$ ~ $N(u, sigma^2)$



I don't get it. The part where "$frac1sigmaE(X) + fracusigmaE(1) = E(X) = u$"



I'm aware that $X$ ~ $N(0, 1)$, $E(X) = 0$.









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited 3 hours ago
























asked 3 hours ago









Bas bas

1878




1878











  • The Line $E(Z)=E[fracXsigma-fracusigma]$ is wrong. The rest of the line should be $frac1sigmaE(X)-fracusigma=0$.
    – herb steinberg
    3 hours ago











  • Why not perform the integration $int_-infty^inftyxf_X(x),dx$?
    – StubbornAtom
    3 hours ago

















  • The Line $E(Z)=E[fracXsigma-fracusigma]$ is wrong. The rest of the line should be $frac1sigmaE(X)-fracusigma=0$.
    – herb steinberg
    3 hours ago











  • Why not perform the integration $int_-infty^inftyxf_X(x),dx$?
    – StubbornAtom
    3 hours ago
















The Line $E(Z)=E[fracXsigma-fracusigma]$ is wrong. The rest of the line should be $frac1sigmaE(X)-fracusigma=0$.
– herb steinberg
3 hours ago





The Line $E(Z)=E[fracXsigma-fracusigma]$ is wrong. The rest of the line should be $frac1sigmaE(X)-fracusigma=0$.
– herb steinberg
3 hours ago













Why not perform the integration $int_-infty^inftyxf_X(x),dx$?
– StubbornAtom
3 hours ago





Why not perform the integration $int_-infty^inftyxf_X(x),dx$?
– StubbornAtom
3 hours ago











1 Answer
1






active

oldest

votes

















up vote
1
down vote



accepted










You have a very big mistake. First of all, the expectation operator is linear, therefore
$$E(Z) = frac1sigmaE(X) - fracmusigmaE(1) = fracmusigma-fracmusigma =0 $$



Second of all, the title's content is different from what you are asking. So from hereon, I will address the question in the title:
$$E(X) = intlimits_-infty^+infty x f_X(x)$$
where
$$f_X(x) = frac1sigmasqrt2pie^-frac12sigma^2(x-mu)^2$$
So
$$E(X) = frac1sigmasqrt2pi intlimits_-infty^+infty x e^-frac12sigma^2(x-mu)^2 dx$$
Take a change of variable $t = x-mu$ so $dt = dx$ and then
$$E(X) = frac1sigmasqrt2pi intlimits_-infty^+infty (t+mu) e^-frac12sigma^2t^2 dt = frac1sigmasqrt2pi intlimits_-infty^+infty t e^-frac12sigma^2t^2 dt+mu intlimits_-infty^+infty frac1sigmasqrt2pie^-frac12sigma^2t^2 dt$$
So the first integral evaluates to zero because it is an odd function. The second integral is the integration of the Normal PDF hence it evaluates to 1. Finally
$$E(X) = 0 + mu(1) = mu$$






share|cite|improve this answer





















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2873320%2fx-nu-sigma2-find-ex%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote



    accepted










    You have a very big mistake. First of all, the expectation operator is linear, therefore
    $$E(Z) = frac1sigmaE(X) - fracmusigmaE(1) = fracmusigma-fracmusigma =0 $$



    Second of all, the title's content is different from what you are asking. So from hereon, I will address the question in the title:
    $$E(X) = intlimits_-infty^+infty x f_X(x)$$
    where
    $$f_X(x) = frac1sigmasqrt2pie^-frac12sigma^2(x-mu)^2$$
    So
    $$E(X) = frac1sigmasqrt2pi intlimits_-infty^+infty x e^-frac12sigma^2(x-mu)^2 dx$$
    Take a change of variable $t = x-mu$ so $dt = dx$ and then
    $$E(X) = frac1sigmasqrt2pi intlimits_-infty^+infty (t+mu) e^-frac12sigma^2t^2 dt = frac1sigmasqrt2pi intlimits_-infty^+infty t e^-frac12sigma^2t^2 dt+mu intlimits_-infty^+infty frac1sigmasqrt2pie^-frac12sigma^2t^2 dt$$
    So the first integral evaluates to zero because it is an odd function. The second integral is the integration of the Normal PDF hence it evaluates to 1. Finally
    $$E(X) = 0 + mu(1) = mu$$






    share|cite|improve this answer

























      up vote
      1
      down vote



      accepted










      You have a very big mistake. First of all, the expectation operator is linear, therefore
      $$E(Z) = frac1sigmaE(X) - fracmusigmaE(1) = fracmusigma-fracmusigma =0 $$



      Second of all, the title's content is different from what you are asking. So from hereon, I will address the question in the title:
      $$E(X) = intlimits_-infty^+infty x f_X(x)$$
      where
      $$f_X(x) = frac1sigmasqrt2pie^-frac12sigma^2(x-mu)^2$$
      So
      $$E(X) = frac1sigmasqrt2pi intlimits_-infty^+infty x e^-frac12sigma^2(x-mu)^2 dx$$
      Take a change of variable $t = x-mu$ so $dt = dx$ and then
      $$E(X) = frac1sigmasqrt2pi intlimits_-infty^+infty (t+mu) e^-frac12sigma^2t^2 dt = frac1sigmasqrt2pi intlimits_-infty^+infty t e^-frac12sigma^2t^2 dt+mu intlimits_-infty^+infty frac1sigmasqrt2pie^-frac12sigma^2t^2 dt$$
      So the first integral evaluates to zero because it is an odd function. The second integral is the integration of the Normal PDF hence it evaluates to 1. Finally
      $$E(X) = 0 + mu(1) = mu$$






      share|cite|improve this answer























        up vote
        1
        down vote



        accepted







        up vote
        1
        down vote



        accepted






        You have a very big mistake. First of all, the expectation operator is linear, therefore
        $$E(Z) = frac1sigmaE(X) - fracmusigmaE(1) = fracmusigma-fracmusigma =0 $$



        Second of all, the title's content is different from what you are asking. So from hereon, I will address the question in the title:
        $$E(X) = intlimits_-infty^+infty x f_X(x)$$
        where
        $$f_X(x) = frac1sigmasqrt2pie^-frac12sigma^2(x-mu)^2$$
        So
        $$E(X) = frac1sigmasqrt2pi intlimits_-infty^+infty x e^-frac12sigma^2(x-mu)^2 dx$$
        Take a change of variable $t = x-mu$ so $dt = dx$ and then
        $$E(X) = frac1sigmasqrt2pi intlimits_-infty^+infty (t+mu) e^-frac12sigma^2t^2 dt = frac1sigmasqrt2pi intlimits_-infty^+infty t e^-frac12sigma^2t^2 dt+mu intlimits_-infty^+infty frac1sigmasqrt2pie^-frac12sigma^2t^2 dt$$
        So the first integral evaluates to zero because it is an odd function. The second integral is the integration of the Normal PDF hence it evaluates to 1. Finally
        $$E(X) = 0 + mu(1) = mu$$






        share|cite|improve this answer













        You have a very big mistake. First of all, the expectation operator is linear, therefore
        $$E(Z) = frac1sigmaE(X) - fracmusigmaE(1) = fracmusigma-fracmusigma =0 $$



        Second of all, the title's content is different from what you are asking. So from hereon, I will address the question in the title:
        $$E(X) = intlimits_-infty^+infty x f_X(x)$$
        where
        $$f_X(x) = frac1sigmasqrt2pie^-frac12sigma^2(x-mu)^2$$
        So
        $$E(X) = frac1sigmasqrt2pi intlimits_-infty^+infty x e^-frac12sigma^2(x-mu)^2 dx$$
        Take a change of variable $t = x-mu$ so $dt = dx$ and then
        $$E(X) = frac1sigmasqrt2pi intlimits_-infty^+infty (t+mu) e^-frac12sigma^2t^2 dt = frac1sigmasqrt2pi intlimits_-infty^+infty t e^-frac12sigma^2t^2 dt+mu intlimits_-infty^+infty frac1sigmasqrt2pie^-frac12sigma^2t^2 dt$$
        So the first integral evaluates to zero because it is an odd function. The second integral is the integration of the Normal PDF hence it evaluates to 1. Finally
        $$E(X) = 0 + mu(1) = mu$$







        share|cite|improve this answer













        share|cite|improve this answer



        share|cite|improve this answer











        answered 3 hours ago









        Ahmad Bazzi

        2,162416




        2,162416






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2873320%2fx-nu-sigma2-find-ex%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What is the equation of a 3D cone with generalised tilt?

            Relationship between determinant of matrix and determinant of adjoint?

            Color the edges and diagonals of a regular polygon