Arithmetic series problem

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
4
down vote

favorite












Given $lefta_nright$ arithmetic progression, $a_1=2$, $a_n+1=a_n+2n$ $left(n:ge :1right)$. $a_50=?$



What i did:
$$a_n+d=a_n+2n$$
$$d=2n$$
$$a_50=2+dleft(n-1right)$$
$$a_50=2+2left(n^2-nright)$$
$$a_50=2+2cdot 2450$$
$$a_50=4902$$



But this is wrong. Answers:



$$A=2452,:B=2450,:C=2552,:D=2500$$







share|cite|improve this question















  • 1




    This is not an arithmetic progression.
    – Yves Daoust
    Jul 31 at 15:20














up vote
4
down vote

favorite












Given $lefta_nright$ arithmetic progression, $a_1=2$, $a_n+1=a_n+2n$ $left(n:ge :1right)$. $a_50=?$



What i did:
$$a_n+d=a_n+2n$$
$$d=2n$$
$$a_50=2+dleft(n-1right)$$
$$a_50=2+2left(n^2-nright)$$
$$a_50=2+2cdot 2450$$
$$a_50=4902$$



But this is wrong. Answers:



$$A=2452,:B=2450,:C=2552,:D=2500$$







share|cite|improve this question















  • 1




    This is not an arithmetic progression.
    – Yves Daoust
    Jul 31 at 15:20












up vote
4
down vote

favorite









up vote
4
down vote

favorite











Given $lefta_nright$ arithmetic progression, $a_1=2$, $a_n+1=a_n+2n$ $left(n:ge :1right)$. $a_50=?$



What i did:
$$a_n+d=a_n+2n$$
$$d=2n$$
$$a_50=2+dleft(n-1right)$$
$$a_50=2+2left(n^2-nright)$$
$$a_50=2+2cdot 2450$$
$$a_50=4902$$



But this is wrong. Answers:



$$A=2452,:B=2450,:C=2552,:D=2500$$







share|cite|improve this question











Given $lefta_nright$ arithmetic progression, $a_1=2$, $a_n+1=a_n+2n$ $left(n:ge :1right)$. $a_50=?$



What i did:
$$a_n+d=a_n+2n$$
$$d=2n$$
$$a_50=2+dleft(n-1right)$$
$$a_50=2+2left(n^2-nright)$$
$$a_50=2+2cdot 2450$$
$$a_50=4902$$



But this is wrong. Answers:



$$A=2452,:B=2450,:C=2552,:D=2500$$









share|cite|improve this question










share|cite|improve this question




share|cite|improve this question









asked Jul 31 at 15:06









Serif Yaohim

233




233







  • 1




    This is not an arithmetic progression.
    – Yves Daoust
    Jul 31 at 15:20












  • 1




    This is not an arithmetic progression.
    – Yves Daoust
    Jul 31 at 15:20







1




1




This is not an arithmetic progression.
– Yves Daoust
Jul 31 at 15:20




This is not an arithmetic progression.
– Yves Daoust
Jul 31 at 15:20










3 Answers
3






active

oldest

votes

















up vote
3
down vote



accepted










Summing up the expressions $a_n+1 = a_n + 2n$ for $n = 1, dots, k$ one easily gets that
$$
a_k+1 = a_1 + sum_i=1^k 2i = 2 + k(k+1)
$$



Hence, $a_50 = 2 + 2450 = 2452$ and the correct answer is A.






share|cite|improve this answer




























    up vote
    5
    down vote













    beginaligna_1&=2\a_n+1&=a_n+2n\&=a_n-1+2[n+(n-1)]\&=a_n-2+2[n+(n-1)+(n-2)]\
    &= ldots\
    &=a_1+2[n+(n-1)+ldots +1]endalign



    Hence beginaligna_50&=a_1+2(49+ldots + 1)\&=2+2cdot frac49(50)2\&=2+49(50)\&=2+(50-1)(50)\&=2+2500-50\&=2452 endalign



    Remark:



    This is not an AP, if it is an AP, the difference between consecutive terms is a constant.






    share|cite|improve this answer























    • I didn't understand second part please help
      – Serif Yaohim
      Jul 31 at 17:03










    • I just let n=49
      – Siong Thye Goh
      Aug 1 at 3:04

















    up vote
    2
    down vote













    Alternatively, note: $a_n+1-a_n=2n$. So:
    $$beginalign a_2-a_1&=2cdot 1\
    a_3-a_2&=2cdot 2\
    a_4-a_3&=2cdot 3\
    &vdots \
    a_50-a_49&=2cdot 49 endalign$$
    Summing all (midterms telescope):
    $$a_50-a_1=2(1+2+3+cdots +49) Rightarrow \
    a_50=a_1+2cdot frac1+492cdot 49=2+2450=2452.$$






    share|cite|improve this answer





















      Your Answer




      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: false,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );








       

      draft saved


      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2868149%2farithmetic-series-problem%23new-answer', 'question_page');

      );

      Post as a guest






























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      3
      down vote



      accepted










      Summing up the expressions $a_n+1 = a_n + 2n$ for $n = 1, dots, k$ one easily gets that
      $$
      a_k+1 = a_1 + sum_i=1^k 2i = 2 + k(k+1)
      $$



      Hence, $a_50 = 2 + 2450 = 2452$ and the correct answer is A.






      share|cite|improve this answer

























        up vote
        3
        down vote



        accepted










        Summing up the expressions $a_n+1 = a_n + 2n$ for $n = 1, dots, k$ one easily gets that
        $$
        a_k+1 = a_1 + sum_i=1^k 2i = 2 + k(k+1)
        $$



        Hence, $a_50 = 2 + 2450 = 2452$ and the correct answer is A.






        share|cite|improve this answer























          up vote
          3
          down vote



          accepted







          up vote
          3
          down vote



          accepted






          Summing up the expressions $a_n+1 = a_n + 2n$ for $n = 1, dots, k$ one easily gets that
          $$
          a_k+1 = a_1 + sum_i=1^k 2i = 2 + k(k+1)
          $$



          Hence, $a_50 = 2 + 2450 = 2452$ and the correct answer is A.






          share|cite|improve this answer













          Summing up the expressions $a_n+1 = a_n + 2n$ for $n = 1, dots, k$ one easily gets that
          $$
          a_k+1 = a_1 + sum_i=1^k 2i = 2 + k(k+1)
          $$



          Hence, $a_50 = 2 + 2450 = 2452$ and the correct answer is A.







          share|cite|improve this answer













          share|cite|improve this answer



          share|cite|improve this answer











          answered Jul 31 at 15:13









          pointguard0

          689517




          689517




















              up vote
              5
              down vote













              beginaligna_1&=2\a_n+1&=a_n+2n\&=a_n-1+2[n+(n-1)]\&=a_n-2+2[n+(n-1)+(n-2)]\
              &= ldots\
              &=a_1+2[n+(n-1)+ldots +1]endalign



              Hence beginaligna_50&=a_1+2(49+ldots + 1)\&=2+2cdot frac49(50)2\&=2+49(50)\&=2+(50-1)(50)\&=2+2500-50\&=2452 endalign



              Remark:



              This is not an AP, if it is an AP, the difference between consecutive terms is a constant.






              share|cite|improve this answer























              • I didn't understand second part please help
                – Serif Yaohim
                Jul 31 at 17:03










              • I just let n=49
                – Siong Thye Goh
                Aug 1 at 3:04














              up vote
              5
              down vote













              beginaligna_1&=2\a_n+1&=a_n+2n\&=a_n-1+2[n+(n-1)]\&=a_n-2+2[n+(n-1)+(n-2)]\
              &= ldots\
              &=a_1+2[n+(n-1)+ldots +1]endalign



              Hence beginaligna_50&=a_1+2(49+ldots + 1)\&=2+2cdot frac49(50)2\&=2+49(50)\&=2+(50-1)(50)\&=2+2500-50\&=2452 endalign



              Remark:



              This is not an AP, if it is an AP, the difference between consecutive terms is a constant.






              share|cite|improve this answer























              • I didn't understand second part please help
                – Serif Yaohim
                Jul 31 at 17:03










              • I just let n=49
                – Siong Thye Goh
                Aug 1 at 3:04












              up vote
              5
              down vote










              up vote
              5
              down vote









              beginaligna_1&=2\a_n+1&=a_n+2n\&=a_n-1+2[n+(n-1)]\&=a_n-2+2[n+(n-1)+(n-2)]\
              &= ldots\
              &=a_1+2[n+(n-1)+ldots +1]endalign



              Hence beginaligna_50&=a_1+2(49+ldots + 1)\&=2+2cdot frac49(50)2\&=2+49(50)\&=2+(50-1)(50)\&=2+2500-50\&=2452 endalign



              Remark:



              This is not an AP, if it is an AP, the difference between consecutive terms is a constant.






              share|cite|improve this answer















              beginaligna_1&=2\a_n+1&=a_n+2n\&=a_n-1+2[n+(n-1)]\&=a_n-2+2[n+(n-1)+(n-2)]\
              &= ldots\
              &=a_1+2[n+(n-1)+ldots +1]endalign



              Hence beginaligna_50&=a_1+2(49+ldots + 1)\&=2+2cdot frac49(50)2\&=2+49(50)\&=2+(50-1)(50)\&=2+2500-50\&=2452 endalign



              Remark:



              This is not an AP, if it is an AP, the difference between consecutive terms is a constant.







              share|cite|improve this answer















              share|cite|improve this answer



              share|cite|improve this answer








              edited Jul 31 at 15:20


























              answered Jul 31 at 15:11









              Siong Thye Goh

              76.7k134794




              76.7k134794











              • I didn't understand second part please help
                – Serif Yaohim
                Jul 31 at 17:03










              • I just let n=49
                – Siong Thye Goh
                Aug 1 at 3:04
















              • I didn't understand second part please help
                – Serif Yaohim
                Jul 31 at 17:03










              • I just let n=49
                – Siong Thye Goh
                Aug 1 at 3:04















              I didn't understand second part please help
              – Serif Yaohim
              Jul 31 at 17:03




              I didn't understand second part please help
              – Serif Yaohim
              Jul 31 at 17:03












              I just let n=49
              – Siong Thye Goh
              Aug 1 at 3:04




              I just let n=49
              – Siong Thye Goh
              Aug 1 at 3:04










              up vote
              2
              down vote













              Alternatively, note: $a_n+1-a_n=2n$. So:
              $$beginalign a_2-a_1&=2cdot 1\
              a_3-a_2&=2cdot 2\
              a_4-a_3&=2cdot 3\
              &vdots \
              a_50-a_49&=2cdot 49 endalign$$
              Summing all (midterms telescope):
              $$a_50-a_1=2(1+2+3+cdots +49) Rightarrow \
              a_50=a_1+2cdot frac1+492cdot 49=2+2450=2452.$$






              share|cite|improve this answer

























                up vote
                2
                down vote













                Alternatively, note: $a_n+1-a_n=2n$. So:
                $$beginalign a_2-a_1&=2cdot 1\
                a_3-a_2&=2cdot 2\
                a_4-a_3&=2cdot 3\
                &vdots \
                a_50-a_49&=2cdot 49 endalign$$
                Summing all (midterms telescope):
                $$a_50-a_1=2(1+2+3+cdots +49) Rightarrow \
                a_50=a_1+2cdot frac1+492cdot 49=2+2450=2452.$$






                share|cite|improve this answer























                  up vote
                  2
                  down vote










                  up vote
                  2
                  down vote









                  Alternatively, note: $a_n+1-a_n=2n$. So:
                  $$beginalign a_2-a_1&=2cdot 1\
                  a_3-a_2&=2cdot 2\
                  a_4-a_3&=2cdot 3\
                  &vdots \
                  a_50-a_49&=2cdot 49 endalign$$
                  Summing all (midterms telescope):
                  $$a_50-a_1=2(1+2+3+cdots +49) Rightarrow \
                  a_50=a_1+2cdot frac1+492cdot 49=2+2450=2452.$$






                  share|cite|improve this answer













                  Alternatively, note: $a_n+1-a_n=2n$. So:
                  $$beginalign a_2-a_1&=2cdot 1\
                  a_3-a_2&=2cdot 2\
                  a_4-a_3&=2cdot 3\
                  &vdots \
                  a_50-a_49&=2cdot 49 endalign$$
                  Summing all (midterms telescope):
                  $$a_50-a_1=2(1+2+3+cdots +49) Rightarrow \
                  a_50=a_1+2cdot frac1+492cdot 49=2+2450=2452.$$







                  share|cite|improve this answer













                  share|cite|improve this answer



                  share|cite|improve this answer











                  answered Jul 31 at 18:53









                  farruhota

                  13.5k2632




                  13.5k2632






















                       

                      draft saved


                      draft discarded


























                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2868149%2farithmetic-series-problem%23new-answer', 'question_page');

                      );

                      Post as a guest













































































                      Comments

                      Popular posts from this blog

                      What is the equation of a 3D cone with generalised tilt?

                      Color the edges and diagonals of a regular polygon

                      Relationship between determinant of matrix and determinant of adjoint?