Find limit $lim_nto inftyfracsum_k=1^n k^nn^n$.
Clash Royale CLAN TAG#URR8PPP
up vote
5
down vote
favorite
Now I want to find the limit
$$lim_ntoinftyfracsumlimits_k=1^n k^nn^n.$$
I try to use the Stolz theorem as follows:
$$lim_nto inftyfracsum_k=1^n k^nn^n=
lim_nto inftyfracsum_k=1^n+1 k^n+1-sum_k=1^n k^n(n+1)^n+1-n^n$$
$$=lim_ntoinftyfrac(n+1)^n+1+sum_k=1^n(k^n+1-k^n)(n+1)^n+1-n^n$$
$$=1+lim_ntoinftyfracsum_k=1^n(k^n+1-k^n)(n+1)^n+1.$$
It seems to deal with the summation like this form:
$$sum_k=1^nk^p,textwith p=n,n+1.$$
I have no way to deal this summation, any help and hint will welcome!
sequences-and-series number-theory limits
add a comment |Â
up vote
5
down vote
favorite
Now I want to find the limit
$$lim_ntoinftyfracsumlimits_k=1^n k^nn^n.$$
I try to use the Stolz theorem as follows:
$$lim_nto inftyfracsum_k=1^n k^nn^n=
lim_nto inftyfracsum_k=1^n+1 k^n+1-sum_k=1^n k^n(n+1)^n+1-n^n$$
$$=lim_ntoinftyfrac(n+1)^n+1+sum_k=1^n(k^n+1-k^n)(n+1)^n+1-n^n$$
$$=1+lim_ntoinftyfracsum_k=1^n(k^n+1-k^n)(n+1)^n+1.$$
It seems to deal with the summation like this form:
$$sum_k=1^nk^p,textwith p=n,n+1.$$
I have no way to deal this summation, any help and hint will welcome!
sequences-and-series number-theory limits
add a comment |Â
up vote
5
down vote
favorite
up vote
5
down vote
favorite
Now I want to find the limit
$$lim_ntoinftyfracsumlimits_k=1^n k^nn^n.$$
I try to use the Stolz theorem as follows:
$$lim_nto inftyfracsum_k=1^n k^nn^n=
lim_nto inftyfracsum_k=1^n+1 k^n+1-sum_k=1^n k^n(n+1)^n+1-n^n$$
$$=lim_ntoinftyfrac(n+1)^n+1+sum_k=1^n(k^n+1-k^n)(n+1)^n+1-n^n$$
$$=1+lim_ntoinftyfracsum_k=1^n(k^n+1-k^n)(n+1)^n+1.$$
It seems to deal with the summation like this form:
$$sum_k=1^nk^p,textwith p=n,n+1.$$
I have no way to deal this summation, any help and hint will welcome!
sequences-and-series number-theory limits
Now I want to find the limit
$$lim_ntoinftyfracsumlimits_k=1^n k^nn^n.$$
I try to use the Stolz theorem as follows:
$$lim_nto inftyfracsum_k=1^n k^nn^n=
lim_nto inftyfracsum_k=1^n+1 k^n+1-sum_k=1^n k^n(n+1)^n+1-n^n$$
$$=lim_ntoinftyfrac(n+1)^n+1+sum_k=1^n(k^n+1-k^n)(n+1)^n+1-n^n$$
$$=1+lim_ntoinftyfracsum_k=1^n(k^n+1-k^n)(n+1)^n+1.$$
It seems to deal with the summation like this form:
$$sum_k=1^nk^p,textwith p=n,n+1.$$
I have no way to deal this summation, any help and hint will welcome!
sequences-and-series number-theory limits
asked Jul 31 at 14:05
Riemann
1,9891217
1,9891217
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
7
down vote
accepted
Hint: For fixed $k,$ $$frac(n-k)^nn^n=left(1-fracknright)^nto e^-k$$
Details:
Note that for $k=0...,n-1$ $$logleft(1-fracknright)=-frackn-frack^22n^2-cdotsleq -frackn$$
So $$left(1-fracknright)^n leq e^-k$$
Then apply the dominated convergence theorem by defining:
$$f_n(k)=begincases0 & kgeq n\ left(1-fracknright)^n& 0leq k<nendcases$$
Then $|f_n(k)|leq g(k)=e^-k$ and for any $k,$ $lim_ktoinftyf_n(k)to g(k).$
How to deal with the double limit??
â Riemann
Jul 31 at 14:33
and the value of limit is ?.Numeric says: $approx1.58$
â Mariusz Iwaniuk
Jul 31 at 14:34
2
the limit is $fracee-1approx1.58$.
â Riemann
Jul 31 at 14:39
1
Could someone add a whole solution? I am interested in this limit aswell but I am not sure how to use the given hint to find the correct value.
â mrtaurho
Jul 31 at 14:44
2
@mrtaurho 1+1/e+1/e^2+ãÂȋÂȋ»+1/e^n+ãÂȋÂȋ»$=frac11-1/e=fracee-1$
â Takahiro Waki
Jul 31 at 14:57
 |Â
show 1 more comment
up vote
7
down vote
We have that
$$fracsumlimits_k=1^n k^nn^n=sum_k=1^n left( frac k n right)^n=sum_k=0^n-1 left( frac n-k n right)^n=sum_k=0^n-1 left( 1-frac k n right)^n$$
then, following the suggestion given by ComplexYetTrivial, let consider
$$a_n=sum_substackk=0 \ k<n^infty left( 1-frac k n right)^n$$
which is strictly increasing and bounded indeed by AM-GM we have
- $sqrt[n+1]left(1-fracknright)^n cdot 1 leq fracn
left(1 - fracknright) + 1n+1 = 1 - frackn+1 $
and
- $left( 1-frac k n right)^n=e^nlog left( 1-frac k n
right)=e^n left( -frac k n-frac k^2 2n^2-frac k^3
3n^3-ldots right)le e^-k$
therefore by the monotone convergence theorem $a_n$ has finite limit and since for $k$ fixed
- $left( 1-frac k n right)^nto e^-k$
we have
$$lim_nto inftyfracsumlimits_k=1^n k^nn^n=lim_nto infty sum_k=0^n-1 left( 1-frac k n right)^n=lim_nto infty sum_substackk=0 \ k<n^infty left( 1-frac k n right)^n=sum_k=0^inftye^-k=fracee-1$$
(+1) without Hints at last.:P
â Mariusz Iwaniuk
Jul 31 at 14:56
@MariuszIwaniuk Thanks! The hint was already given! :)
â gimusi
Jul 31 at 15:01
2
In your second line, the $O(frac1n)$ depends on $k$. Therefore you canâÂÂt factorize $O(frac1n)$ in the sum without an additional argument.
â mathcounterexamples.net
Jul 31 at 15:41
@mathcounterexamples.net Yes I think you are right, it's a step I need to revise. Thanks
â gimusi
Jul 31 at 15:44
You could write the sum as $sum_k=0^infty left(1-fracknright)^n operatorname1(k<n)$, observe that the sequence $left[left(1-fracknright)^n operatorname1(k<n)right]_ninmathbbN$ is increasing and use the monotone convergence theorem to interchange summation and limit.
â ComplexYetTrivial
Jul 31 at 16:16
 |Â
show 4 more comments
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
7
down vote
accepted
Hint: For fixed $k,$ $$frac(n-k)^nn^n=left(1-fracknright)^nto e^-k$$
Details:
Note that for $k=0...,n-1$ $$logleft(1-fracknright)=-frackn-frack^22n^2-cdotsleq -frackn$$
So $$left(1-fracknright)^n leq e^-k$$
Then apply the dominated convergence theorem by defining:
$$f_n(k)=begincases0 & kgeq n\ left(1-fracknright)^n& 0leq k<nendcases$$
Then $|f_n(k)|leq g(k)=e^-k$ and for any $k,$ $lim_ktoinftyf_n(k)to g(k).$
How to deal with the double limit??
â Riemann
Jul 31 at 14:33
and the value of limit is ?.Numeric says: $approx1.58$
â Mariusz Iwaniuk
Jul 31 at 14:34
2
the limit is $fracee-1approx1.58$.
â Riemann
Jul 31 at 14:39
1
Could someone add a whole solution? I am interested in this limit aswell but I am not sure how to use the given hint to find the correct value.
â mrtaurho
Jul 31 at 14:44
2
@mrtaurho 1+1/e+1/e^2+ãÂȋÂȋ»+1/e^n+ãÂȋÂȋ»$=frac11-1/e=fracee-1$
â Takahiro Waki
Jul 31 at 14:57
 |Â
show 1 more comment
up vote
7
down vote
accepted
Hint: For fixed $k,$ $$frac(n-k)^nn^n=left(1-fracknright)^nto e^-k$$
Details:
Note that for $k=0...,n-1$ $$logleft(1-fracknright)=-frackn-frack^22n^2-cdotsleq -frackn$$
So $$left(1-fracknright)^n leq e^-k$$
Then apply the dominated convergence theorem by defining:
$$f_n(k)=begincases0 & kgeq n\ left(1-fracknright)^n& 0leq k<nendcases$$
Then $|f_n(k)|leq g(k)=e^-k$ and for any $k,$ $lim_ktoinftyf_n(k)to g(k).$
How to deal with the double limit??
â Riemann
Jul 31 at 14:33
and the value of limit is ?.Numeric says: $approx1.58$
â Mariusz Iwaniuk
Jul 31 at 14:34
2
the limit is $fracee-1approx1.58$.
â Riemann
Jul 31 at 14:39
1
Could someone add a whole solution? I am interested in this limit aswell but I am not sure how to use the given hint to find the correct value.
â mrtaurho
Jul 31 at 14:44
2
@mrtaurho 1+1/e+1/e^2+ãÂȋÂȋ»+1/e^n+ãÂȋÂȋ»$=frac11-1/e=fracee-1$
â Takahiro Waki
Jul 31 at 14:57
 |Â
show 1 more comment
up vote
7
down vote
accepted
up vote
7
down vote
accepted
Hint: For fixed $k,$ $$frac(n-k)^nn^n=left(1-fracknright)^nto e^-k$$
Details:
Note that for $k=0...,n-1$ $$logleft(1-fracknright)=-frackn-frack^22n^2-cdotsleq -frackn$$
So $$left(1-fracknright)^n leq e^-k$$
Then apply the dominated convergence theorem by defining:
$$f_n(k)=begincases0 & kgeq n\ left(1-fracknright)^n& 0leq k<nendcases$$
Then $|f_n(k)|leq g(k)=e^-k$ and for any $k,$ $lim_ktoinftyf_n(k)to g(k).$
Hint: For fixed $k,$ $$frac(n-k)^nn^n=left(1-fracknright)^nto e^-k$$
Details:
Note that for $k=0...,n-1$ $$logleft(1-fracknright)=-frackn-frack^22n^2-cdotsleq -frackn$$
So $$left(1-fracknright)^n leq e^-k$$
Then apply the dominated convergence theorem by defining:
$$f_n(k)=begincases0 & kgeq n\ left(1-fracknright)^n& 0leq k<nendcases$$
Then $|f_n(k)|leq g(k)=e^-k$ and for any $k,$ $lim_ktoinftyf_n(k)to g(k).$
edited Jul 31 at 22:05
answered Jul 31 at 14:10
Thomas Andrews
128k10143284
128k10143284
How to deal with the double limit??
â Riemann
Jul 31 at 14:33
and the value of limit is ?.Numeric says: $approx1.58$
â Mariusz Iwaniuk
Jul 31 at 14:34
2
the limit is $fracee-1approx1.58$.
â Riemann
Jul 31 at 14:39
1
Could someone add a whole solution? I am interested in this limit aswell but I am not sure how to use the given hint to find the correct value.
â mrtaurho
Jul 31 at 14:44
2
@mrtaurho 1+1/e+1/e^2+ãÂȋÂȋ»+1/e^n+ãÂȋÂȋ»$=frac11-1/e=fracee-1$
â Takahiro Waki
Jul 31 at 14:57
 |Â
show 1 more comment
How to deal with the double limit??
â Riemann
Jul 31 at 14:33
and the value of limit is ?.Numeric says: $approx1.58$
â Mariusz Iwaniuk
Jul 31 at 14:34
2
the limit is $fracee-1approx1.58$.
â Riemann
Jul 31 at 14:39
1
Could someone add a whole solution? I am interested in this limit aswell but I am not sure how to use the given hint to find the correct value.
â mrtaurho
Jul 31 at 14:44
2
@mrtaurho 1+1/e+1/e^2+ãÂȋÂȋ»+1/e^n+ãÂȋÂȋ»$=frac11-1/e=fracee-1$
â Takahiro Waki
Jul 31 at 14:57
How to deal with the double limit??
â Riemann
Jul 31 at 14:33
How to deal with the double limit??
â Riemann
Jul 31 at 14:33
and the value of limit is ?.Numeric says: $approx1.58$
â Mariusz Iwaniuk
Jul 31 at 14:34
and the value of limit is ?.Numeric says: $approx1.58$
â Mariusz Iwaniuk
Jul 31 at 14:34
2
2
the limit is $fracee-1approx1.58$.
â Riemann
Jul 31 at 14:39
the limit is $fracee-1approx1.58$.
â Riemann
Jul 31 at 14:39
1
1
Could someone add a whole solution? I am interested in this limit aswell but I am not sure how to use the given hint to find the correct value.
â mrtaurho
Jul 31 at 14:44
Could someone add a whole solution? I am interested in this limit aswell but I am not sure how to use the given hint to find the correct value.
â mrtaurho
Jul 31 at 14:44
2
2
@mrtaurho 1+1/e+1/e^2+ãÂȋÂȋ»+1/e^n+ãÂȋÂȋ»$=frac11-1/e=fracee-1$
â Takahiro Waki
Jul 31 at 14:57
@mrtaurho 1+1/e+1/e^2+ãÂȋÂȋ»+1/e^n+ãÂȋÂȋ»$=frac11-1/e=fracee-1$
â Takahiro Waki
Jul 31 at 14:57
 |Â
show 1 more comment
up vote
7
down vote
We have that
$$fracsumlimits_k=1^n k^nn^n=sum_k=1^n left( frac k n right)^n=sum_k=0^n-1 left( frac n-k n right)^n=sum_k=0^n-1 left( 1-frac k n right)^n$$
then, following the suggestion given by ComplexYetTrivial, let consider
$$a_n=sum_substackk=0 \ k<n^infty left( 1-frac k n right)^n$$
which is strictly increasing and bounded indeed by AM-GM we have
- $sqrt[n+1]left(1-fracknright)^n cdot 1 leq fracn
left(1 - fracknright) + 1n+1 = 1 - frackn+1 $
and
- $left( 1-frac k n right)^n=e^nlog left( 1-frac k n
right)=e^n left( -frac k n-frac k^2 2n^2-frac k^3
3n^3-ldots right)le e^-k$
therefore by the monotone convergence theorem $a_n$ has finite limit and since for $k$ fixed
- $left( 1-frac k n right)^nto e^-k$
we have
$$lim_nto inftyfracsumlimits_k=1^n k^nn^n=lim_nto infty sum_k=0^n-1 left( 1-frac k n right)^n=lim_nto infty sum_substackk=0 \ k<n^infty left( 1-frac k n right)^n=sum_k=0^inftye^-k=fracee-1$$
(+1) without Hints at last.:P
â Mariusz Iwaniuk
Jul 31 at 14:56
@MariuszIwaniuk Thanks! The hint was already given! :)
â gimusi
Jul 31 at 15:01
2
In your second line, the $O(frac1n)$ depends on $k$. Therefore you canâÂÂt factorize $O(frac1n)$ in the sum without an additional argument.
â mathcounterexamples.net
Jul 31 at 15:41
@mathcounterexamples.net Yes I think you are right, it's a step I need to revise. Thanks
â gimusi
Jul 31 at 15:44
You could write the sum as $sum_k=0^infty left(1-fracknright)^n operatorname1(k<n)$, observe that the sequence $left[left(1-fracknright)^n operatorname1(k<n)right]_ninmathbbN$ is increasing and use the monotone convergence theorem to interchange summation and limit.
â ComplexYetTrivial
Jul 31 at 16:16
 |Â
show 4 more comments
up vote
7
down vote
We have that
$$fracsumlimits_k=1^n k^nn^n=sum_k=1^n left( frac k n right)^n=sum_k=0^n-1 left( frac n-k n right)^n=sum_k=0^n-1 left( 1-frac k n right)^n$$
then, following the suggestion given by ComplexYetTrivial, let consider
$$a_n=sum_substackk=0 \ k<n^infty left( 1-frac k n right)^n$$
which is strictly increasing and bounded indeed by AM-GM we have
- $sqrt[n+1]left(1-fracknright)^n cdot 1 leq fracn
left(1 - fracknright) + 1n+1 = 1 - frackn+1 $
and
- $left( 1-frac k n right)^n=e^nlog left( 1-frac k n
right)=e^n left( -frac k n-frac k^2 2n^2-frac k^3
3n^3-ldots right)le e^-k$
therefore by the monotone convergence theorem $a_n$ has finite limit and since for $k$ fixed
- $left( 1-frac k n right)^nto e^-k$
we have
$$lim_nto inftyfracsumlimits_k=1^n k^nn^n=lim_nto infty sum_k=0^n-1 left( 1-frac k n right)^n=lim_nto infty sum_substackk=0 \ k<n^infty left( 1-frac k n right)^n=sum_k=0^inftye^-k=fracee-1$$
(+1) without Hints at last.:P
â Mariusz Iwaniuk
Jul 31 at 14:56
@MariuszIwaniuk Thanks! The hint was already given! :)
â gimusi
Jul 31 at 15:01
2
In your second line, the $O(frac1n)$ depends on $k$. Therefore you canâÂÂt factorize $O(frac1n)$ in the sum without an additional argument.
â mathcounterexamples.net
Jul 31 at 15:41
@mathcounterexamples.net Yes I think you are right, it's a step I need to revise. Thanks
â gimusi
Jul 31 at 15:44
You could write the sum as $sum_k=0^infty left(1-fracknright)^n operatorname1(k<n)$, observe that the sequence $left[left(1-fracknright)^n operatorname1(k<n)right]_ninmathbbN$ is increasing and use the monotone convergence theorem to interchange summation and limit.
â ComplexYetTrivial
Jul 31 at 16:16
 |Â
show 4 more comments
up vote
7
down vote
up vote
7
down vote
We have that
$$fracsumlimits_k=1^n k^nn^n=sum_k=1^n left( frac k n right)^n=sum_k=0^n-1 left( frac n-k n right)^n=sum_k=0^n-1 left( 1-frac k n right)^n$$
then, following the suggestion given by ComplexYetTrivial, let consider
$$a_n=sum_substackk=0 \ k<n^infty left( 1-frac k n right)^n$$
which is strictly increasing and bounded indeed by AM-GM we have
- $sqrt[n+1]left(1-fracknright)^n cdot 1 leq fracn
left(1 - fracknright) + 1n+1 = 1 - frackn+1 $
and
- $left( 1-frac k n right)^n=e^nlog left( 1-frac k n
right)=e^n left( -frac k n-frac k^2 2n^2-frac k^3
3n^3-ldots right)le e^-k$
therefore by the monotone convergence theorem $a_n$ has finite limit and since for $k$ fixed
- $left( 1-frac k n right)^nto e^-k$
we have
$$lim_nto inftyfracsumlimits_k=1^n k^nn^n=lim_nto infty sum_k=0^n-1 left( 1-frac k n right)^n=lim_nto infty sum_substackk=0 \ k<n^infty left( 1-frac k n right)^n=sum_k=0^inftye^-k=fracee-1$$
We have that
$$fracsumlimits_k=1^n k^nn^n=sum_k=1^n left( frac k n right)^n=sum_k=0^n-1 left( frac n-k n right)^n=sum_k=0^n-1 left( 1-frac k n right)^n$$
then, following the suggestion given by ComplexYetTrivial, let consider
$$a_n=sum_substackk=0 \ k<n^infty left( 1-frac k n right)^n$$
which is strictly increasing and bounded indeed by AM-GM we have
- $sqrt[n+1]left(1-fracknright)^n cdot 1 leq fracn
left(1 - fracknright) + 1n+1 = 1 - frackn+1 $
and
- $left( 1-frac k n right)^n=e^nlog left( 1-frac k n
right)=e^n left( -frac k n-frac k^2 2n^2-frac k^3
3n^3-ldots right)le e^-k$
therefore by the monotone convergence theorem $a_n$ has finite limit and since for $k$ fixed
- $left( 1-frac k n right)^nto e^-k$
we have
$$lim_nto inftyfracsumlimits_k=1^n k^nn^n=lim_nto infty sum_k=0^n-1 left( 1-frac k n right)^n=lim_nto infty sum_substackk=0 \ k<n^infty left( 1-frac k n right)^n=sum_k=0^inftye^-k=fracee-1$$
edited Aug 1 at 21:08
answered Jul 31 at 14:46
gimusi
64.1k73480
64.1k73480
(+1) without Hints at last.:P
â Mariusz Iwaniuk
Jul 31 at 14:56
@MariuszIwaniuk Thanks! The hint was already given! :)
â gimusi
Jul 31 at 15:01
2
In your second line, the $O(frac1n)$ depends on $k$. Therefore you canâÂÂt factorize $O(frac1n)$ in the sum without an additional argument.
â mathcounterexamples.net
Jul 31 at 15:41
@mathcounterexamples.net Yes I think you are right, it's a step I need to revise. Thanks
â gimusi
Jul 31 at 15:44
You could write the sum as $sum_k=0^infty left(1-fracknright)^n operatorname1(k<n)$, observe that the sequence $left[left(1-fracknright)^n operatorname1(k<n)right]_ninmathbbN$ is increasing and use the monotone convergence theorem to interchange summation and limit.
â ComplexYetTrivial
Jul 31 at 16:16
 |Â
show 4 more comments
(+1) without Hints at last.:P
â Mariusz Iwaniuk
Jul 31 at 14:56
@MariuszIwaniuk Thanks! The hint was already given! :)
â gimusi
Jul 31 at 15:01
2
In your second line, the $O(frac1n)$ depends on $k$. Therefore you canâÂÂt factorize $O(frac1n)$ in the sum without an additional argument.
â mathcounterexamples.net
Jul 31 at 15:41
@mathcounterexamples.net Yes I think you are right, it's a step I need to revise. Thanks
â gimusi
Jul 31 at 15:44
You could write the sum as $sum_k=0^infty left(1-fracknright)^n operatorname1(k<n)$, observe that the sequence $left[left(1-fracknright)^n operatorname1(k<n)right]_ninmathbbN$ is increasing and use the monotone convergence theorem to interchange summation and limit.
â ComplexYetTrivial
Jul 31 at 16:16
(+1) without Hints at last.
:P
â Mariusz Iwaniuk
Jul 31 at 14:56
(+1) without Hints at last.
:P
â Mariusz Iwaniuk
Jul 31 at 14:56
@MariuszIwaniuk Thanks! The hint was already given! :)
â gimusi
Jul 31 at 15:01
@MariuszIwaniuk Thanks! The hint was already given! :)
â gimusi
Jul 31 at 15:01
2
2
In your second line, the $O(frac1n)$ depends on $k$. Therefore you canâÂÂt factorize $O(frac1n)$ in the sum without an additional argument.
â mathcounterexamples.net
Jul 31 at 15:41
In your second line, the $O(frac1n)$ depends on $k$. Therefore you canâÂÂt factorize $O(frac1n)$ in the sum without an additional argument.
â mathcounterexamples.net
Jul 31 at 15:41
@mathcounterexamples.net Yes I think you are right, it's a step I need to revise. Thanks
â gimusi
Jul 31 at 15:44
@mathcounterexamples.net Yes I think you are right, it's a step I need to revise. Thanks
â gimusi
Jul 31 at 15:44
You could write the sum as $sum_k=0^infty left(1-fracknright)^n operatorname1(k<n)$, observe that the sequence $left[left(1-fracknright)^n operatorname1(k<n)right]_ninmathbbN$ is increasing and use the monotone convergence theorem to interchange summation and limit.
â ComplexYetTrivial
Jul 31 at 16:16
You could write the sum as $sum_k=0^infty left(1-fracknright)^n operatorname1(k<n)$, observe that the sequence $left[left(1-fracknright)^n operatorname1(k<n)right]_ninmathbbN$ is increasing and use the monotone convergence theorem to interchange summation and limit.
â ComplexYetTrivial
Jul 31 at 16:16
 |Â
show 4 more comments
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2868069%2ffind-limit-lim-n-to-infty-frac-sum-k-1n-knnn%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password