Find limit $lim_nto inftyfracsum_k=1^n k^nn^n$.

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
5
down vote

favorite












Now I want to find the limit
$$lim_ntoinftyfracsumlimits_k=1^n k^nn^n.$$
I try to use the Stolz theorem as follows:
$$lim_nto inftyfracsum_k=1^n k^nn^n=
lim_nto inftyfracsum_k=1^n+1 k^n+1-sum_k=1^n k^n(n+1)^n+1-n^n$$
$$=lim_ntoinftyfrac(n+1)^n+1+sum_k=1^n(k^n+1-k^n)(n+1)^n+1-n^n$$
$$=1+lim_ntoinftyfracsum_k=1^n(k^n+1-k^n)(n+1)^n+1.$$
It seems to deal with the summation like this form:
$$sum_k=1^nk^p,textwith p=n,n+1.$$
I have no way to deal this summation, any help and hint will welcome!







share|cite|improve this question























    up vote
    5
    down vote

    favorite












    Now I want to find the limit
    $$lim_ntoinftyfracsumlimits_k=1^n k^nn^n.$$
    I try to use the Stolz theorem as follows:
    $$lim_nto inftyfracsum_k=1^n k^nn^n=
    lim_nto inftyfracsum_k=1^n+1 k^n+1-sum_k=1^n k^n(n+1)^n+1-n^n$$
    $$=lim_ntoinftyfrac(n+1)^n+1+sum_k=1^n(k^n+1-k^n)(n+1)^n+1-n^n$$
    $$=1+lim_ntoinftyfracsum_k=1^n(k^n+1-k^n)(n+1)^n+1.$$
    It seems to deal with the summation like this form:
    $$sum_k=1^nk^p,textwith p=n,n+1.$$
    I have no way to deal this summation, any help and hint will welcome!







    share|cite|improve this question





















      up vote
      5
      down vote

      favorite









      up vote
      5
      down vote

      favorite











      Now I want to find the limit
      $$lim_ntoinftyfracsumlimits_k=1^n k^nn^n.$$
      I try to use the Stolz theorem as follows:
      $$lim_nto inftyfracsum_k=1^n k^nn^n=
      lim_nto inftyfracsum_k=1^n+1 k^n+1-sum_k=1^n k^n(n+1)^n+1-n^n$$
      $$=lim_ntoinftyfrac(n+1)^n+1+sum_k=1^n(k^n+1-k^n)(n+1)^n+1-n^n$$
      $$=1+lim_ntoinftyfracsum_k=1^n(k^n+1-k^n)(n+1)^n+1.$$
      It seems to deal with the summation like this form:
      $$sum_k=1^nk^p,textwith p=n,n+1.$$
      I have no way to deal this summation, any help and hint will welcome!







      share|cite|improve this question











      Now I want to find the limit
      $$lim_ntoinftyfracsumlimits_k=1^n k^nn^n.$$
      I try to use the Stolz theorem as follows:
      $$lim_nto inftyfracsum_k=1^n k^nn^n=
      lim_nto inftyfracsum_k=1^n+1 k^n+1-sum_k=1^n k^n(n+1)^n+1-n^n$$
      $$=lim_ntoinftyfrac(n+1)^n+1+sum_k=1^n(k^n+1-k^n)(n+1)^n+1-n^n$$
      $$=1+lim_ntoinftyfracsum_k=1^n(k^n+1-k^n)(n+1)^n+1.$$
      It seems to deal with the summation like this form:
      $$sum_k=1^nk^p,textwith p=n,n+1.$$
      I have no way to deal this summation, any help and hint will welcome!









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked Jul 31 at 14:05









      Riemann

      1,9891217




      1,9891217




















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          7
          down vote



          accepted










          Hint: For fixed $k,$ $$frac(n-k)^nn^n=left(1-fracknright)^nto e^-k$$




          Details:



          Note that for $k=0...,n-1$ $$logleft(1-fracknright)=-frackn-frack^22n^2-cdotsleq -frackn$$



          So $$left(1-fracknright)^n leq e^-k$$



          Then apply the dominated convergence theorem by defining:



          $$f_n(k)=begincases0 & kgeq n\ left(1-fracknright)^n& 0leq k<nendcases$$



          Then $|f_n(k)|leq g(k)=e^-k$ and for any $k,$ $lim_ktoinftyf_n(k)to g(k).$






          share|cite|improve this answer























          • How to deal with the double limit??
            – Riemann
            Jul 31 at 14:33










          • and the value of limit is ?.Numeric says: $approx1.58$
            – Mariusz Iwaniuk
            Jul 31 at 14:34






          • 2




            the limit is $fracee-1approx1.58$.
            – Riemann
            Jul 31 at 14:39







          • 1




            Could someone add a whole solution? I am interested in this limit aswell but I am not sure how to use the given hint to find the correct value.
            – mrtaurho
            Jul 31 at 14:44






          • 2




            @mrtaurho 1+1/e+1/e^2+・・・+1/e^n+・・・$=frac11-1/e=fracee-1$
            – Takahiro Waki
            Jul 31 at 14:57

















          up vote
          7
          down vote













          We have that



          $$fracsumlimits_k=1^n k^nn^n=sum_k=1^n left( frac k n right)^n=sum_k=0^n-1 left( frac n-k n right)^n=sum_k=0^n-1 left( 1-frac k n right)^n$$



          then, following the suggestion given by ComplexYetTrivial, let consider



          $$a_n=sum_substackk=0 \ k<n^infty left( 1-frac k n right)^n$$



          which is strictly increasing and bounded indeed by AM-GM we have



          • $sqrt[n+1]left(1-fracknright)^n cdot 1 leq fracn
            left(1 - fracknright) + 1n+1 = 1 - frackn+1 $

          and



          • $left( 1-frac k n right)^n=e^nlog left( 1-frac k n
            right)=e^n left( -frac k n-frac k^2 2n^2-frac k^3
            3n^3-ldots right)le e^-k$

          therefore by the monotone convergence theorem $a_n$ has finite limit and since for $k$ fixed



          • $left( 1-frac k n right)^nto e^-k$

          we have



          $$lim_nto inftyfracsumlimits_k=1^n k^nn^n=lim_nto infty sum_k=0^n-1 left( 1-frac k n right)^n=lim_nto infty sum_substackk=0 \ k<n^infty left( 1-frac k n right)^n=sum_k=0^inftye^-k=fracee-1$$






          share|cite|improve this answer























          • (+1) without Hints at last. :P
            – Mariusz Iwaniuk
            Jul 31 at 14:56










          • @MariuszIwaniuk Thanks! The hint was already given! :)
            – gimusi
            Jul 31 at 15:01






          • 2




            In your second line, the $O(frac1n)$ depends on $k$. Therefore you can’t factorize $O(frac1n)$ in the sum without an additional argument.
            – mathcounterexamples.net
            Jul 31 at 15:41











          • @mathcounterexamples.net Yes I think you are right, it's a step I need to revise. Thanks
            – gimusi
            Jul 31 at 15:44










          • You could write the sum as $sum_k=0^infty left(1-fracknright)^n operatorname1(k<n)$, observe that the sequence $left[left(1-fracknright)^n operatorname1(k<n)right]_ninmathbbN$ is increasing and use the monotone convergence theorem to interchange summation and limit.
            – ComplexYetTrivial
            Jul 31 at 16:16











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2868069%2ffind-limit-lim-n-to-infty-frac-sum-k-1n-knnn%23new-answer', 'question_page');

          );

          Post as a guest






























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          7
          down vote



          accepted










          Hint: For fixed $k,$ $$frac(n-k)^nn^n=left(1-fracknright)^nto e^-k$$




          Details:



          Note that for $k=0...,n-1$ $$logleft(1-fracknright)=-frackn-frack^22n^2-cdotsleq -frackn$$



          So $$left(1-fracknright)^n leq e^-k$$



          Then apply the dominated convergence theorem by defining:



          $$f_n(k)=begincases0 & kgeq n\ left(1-fracknright)^n& 0leq k<nendcases$$



          Then $|f_n(k)|leq g(k)=e^-k$ and for any $k,$ $lim_ktoinftyf_n(k)to g(k).$






          share|cite|improve this answer























          • How to deal with the double limit??
            – Riemann
            Jul 31 at 14:33










          • and the value of limit is ?.Numeric says: $approx1.58$
            – Mariusz Iwaniuk
            Jul 31 at 14:34






          • 2




            the limit is $fracee-1approx1.58$.
            – Riemann
            Jul 31 at 14:39







          • 1




            Could someone add a whole solution? I am interested in this limit aswell but I am not sure how to use the given hint to find the correct value.
            – mrtaurho
            Jul 31 at 14:44






          • 2




            @mrtaurho 1+1/e+1/e^2+・・・+1/e^n+・・・$=frac11-1/e=fracee-1$
            – Takahiro Waki
            Jul 31 at 14:57














          up vote
          7
          down vote



          accepted










          Hint: For fixed $k,$ $$frac(n-k)^nn^n=left(1-fracknright)^nto e^-k$$




          Details:



          Note that for $k=0...,n-1$ $$logleft(1-fracknright)=-frackn-frack^22n^2-cdotsleq -frackn$$



          So $$left(1-fracknright)^n leq e^-k$$



          Then apply the dominated convergence theorem by defining:



          $$f_n(k)=begincases0 & kgeq n\ left(1-fracknright)^n& 0leq k<nendcases$$



          Then $|f_n(k)|leq g(k)=e^-k$ and for any $k,$ $lim_ktoinftyf_n(k)to g(k).$






          share|cite|improve this answer























          • How to deal with the double limit??
            – Riemann
            Jul 31 at 14:33










          • and the value of limit is ?.Numeric says: $approx1.58$
            – Mariusz Iwaniuk
            Jul 31 at 14:34






          • 2




            the limit is $fracee-1approx1.58$.
            – Riemann
            Jul 31 at 14:39







          • 1




            Could someone add a whole solution? I am interested in this limit aswell but I am not sure how to use the given hint to find the correct value.
            – mrtaurho
            Jul 31 at 14:44






          • 2




            @mrtaurho 1+1/e+1/e^2+・・・+1/e^n+・・・$=frac11-1/e=fracee-1$
            – Takahiro Waki
            Jul 31 at 14:57












          up vote
          7
          down vote



          accepted







          up vote
          7
          down vote



          accepted






          Hint: For fixed $k,$ $$frac(n-k)^nn^n=left(1-fracknright)^nto e^-k$$




          Details:



          Note that for $k=0...,n-1$ $$logleft(1-fracknright)=-frackn-frack^22n^2-cdotsleq -frackn$$



          So $$left(1-fracknright)^n leq e^-k$$



          Then apply the dominated convergence theorem by defining:



          $$f_n(k)=begincases0 & kgeq n\ left(1-fracknright)^n& 0leq k<nendcases$$



          Then $|f_n(k)|leq g(k)=e^-k$ and for any $k,$ $lim_ktoinftyf_n(k)to g(k).$






          share|cite|improve this answer















          Hint: For fixed $k,$ $$frac(n-k)^nn^n=left(1-fracknright)^nto e^-k$$




          Details:



          Note that for $k=0...,n-1$ $$logleft(1-fracknright)=-frackn-frack^22n^2-cdotsleq -frackn$$



          So $$left(1-fracknright)^n leq e^-k$$



          Then apply the dominated convergence theorem by defining:



          $$f_n(k)=begincases0 & kgeq n\ left(1-fracknright)^n& 0leq k<nendcases$$



          Then $|f_n(k)|leq g(k)=e^-k$ and for any $k,$ $lim_ktoinftyf_n(k)to g(k).$







          share|cite|improve this answer















          share|cite|improve this answer



          share|cite|improve this answer








          edited Jul 31 at 22:05


























          answered Jul 31 at 14:10









          Thomas Andrews

          128k10143284




          128k10143284











          • How to deal with the double limit??
            – Riemann
            Jul 31 at 14:33










          • and the value of limit is ?.Numeric says: $approx1.58$
            – Mariusz Iwaniuk
            Jul 31 at 14:34






          • 2




            the limit is $fracee-1approx1.58$.
            – Riemann
            Jul 31 at 14:39







          • 1




            Could someone add a whole solution? I am interested in this limit aswell but I am not sure how to use the given hint to find the correct value.
            – mrtaurho
            Jul 31 at 14:44






          • 2




            @mrtaurho 1+1/e+1/e^2+・・・+1/e^n+・・・$=frac11-1/e=fracee-1$
            – Takahiro Waki
            Jul 31 at 14:57
















          • How to deal with the double limit??
            – Riemann
            Jul 31 at 14:33










          • and the value of limit is ?.Numeric says: $approx1.58$
            – Mariusz Iwaniuk
            Jul 31 at 14:34






          • 2




            the limit is $fracee-1approx1.58$.
            – Riemann
            Jul 31 at 14:39







          • 1




            Could someone add a whole solution? I am interested in this limit aswell but I am not sure how to use the given hint to find the correct value.
            – mrtaurho
            Jul 31 at 14:44






          • 2




            @mrtaurho 1+1/e+1/e^2+・・・+1/e^n+・・・$=frac11-1/e=fracee-1$
            – Takahiro Waki
            Jul 31 at 14:57















          How to deal with the double limit??
          – Riemann
          Jul 31 at 14:33




          How to deal with the double limit??
          – Riemann
          Jul 31 at 14:33












          and the value of limit is ?.Numeric says: $approx1.58$
          – Mariusz Iwaniuk
          Jul 31 at 14:34




          and the value of limit is ?.Numeric says: $approx1.58$
          – Mariusz Iwaniuk
          Jul 31 at 14:34




          2




          2




          the limit is $fracee-1approx1.58$.
          – Riemann
          Jul 31 at 14:39





          the limit is $fracee-1approx1.58$.
          – Riemann
          Jul 31 at 14:39





          1




          1




          Could someone add a whole solution? I am interested in this limit aswell but I am not sure how to use the given hint to find the correct value.
          – mrtaurho
          Jul 31 at 14:44




          Could someone add a whole solution? I am interested in this limit aswell but I am not sure how to use the given hint to find the correct value.
          – mrtaurho
          Jul 31 at 14:44




          2




          2




          @mrtaurho 1+1/e+1/e^2+・・・+1/e^n+・・・$=frac11-1/e=fracee-1$
          – Takahiro Waki
          Jul 31 at 14:57




          @mrtaurho 1+1/e+1/e^2+・・・+1/e^n+・・・$=frac11-1/e=fracee-1$
          – Takahiro Waki
          Jul 31 at 14:57










          up vote
          7
          down vote













          We have that



          $$fracsumlimits_k=1^n k^nn^n=sum_k=1^n left( frac k n right)^n=sum_k=0^n-1 left( frac n-k n right)^n=sum_k=0^n-1 left( 1-frac k n right)^n$$



          then, following the suggestion given by ComplexYetTrivial, let consider



          $$a_n=sum_substackk=0 \ k<n^infty left( 1-frac k n right)^n$$



          which is strictly increasing and bounded indeed by AM-GM we have



          • $sqrt[n+1]left(1-fracknright)^n cdot 1 leq fracn
            left(1 - fracknright) + 1n+1 = 1 - frackn+1 $

          and



          • $left( 1-frac k n right)^n=e^nlog left( 1-frac k n
            right)=e^n left( -frac k n-frac k^2 2n^2-frac k^3
            3n^3-ldots right)le e^-k$

          therefore by the monotone convergence theorem $a_n$ has finite limit and since for $k$ fixed



          • $left( 1-frac k n right)^nto e^-k$

          we have



          $$lim_nto inftyfracsumlimits_k=1^n k^nn^n=lim_nto infty sum_k=0^n-1 left( 1-frac k n right)^n=lim_nto infty sum_substackk=0 \ k<n^infty left( 1-frac k n right)^n=sum_k=0^inftye^-k=fracee-1$$






          share|cite|improve this answer























          • (+1) without Hints at last. :P
            – Mariusz Iwaniuk
            Jul 31 at 14:56










          • @MariuszIwaniuk Thanks! The hint was already given! :)
            – gimusi
            Jul 31 at 15:01






          • 2




            In your second line, the $O(frac1n)$ depends on $k$. Therefore you can’t factorize $O(frac1n)$ in the sum without an additional argument.
            – mathcounterexamples.net
            Jul 31 at 15:41











          • @mathcounterexamples.net Yes I think you are right, it's a step I need to revise. Thanks
            – gimusi
            Jul 31 at 15:44










          • You could write the sum as $sum_k=0^infty left(1-fracknright)^n operatorname1(k<n)$, observe that the sequence $left[left(1-fracknright)^n operatorname1(k<n)right]_ninmathbbN$ is increasing and use the monotone convergence theorem to interchange summation and limit.
            – ComplexYetTrivial
            Jul 31 at 16:16















          up vote
          7
          down vote













          We have that



          $$fracsumlimits_k=1^n k^nn^n=sum_k=1^n left( frac k n right)^n=sum_k=0^n-1 left( frac n-k n right)^n=sum_k=0^n-1 left( 1-frac k n right)^n$$



          then, following the suggestion given by ComplexYetTrivial, let consider



          $$a_n=sum_substackk=0 \ k<n^infty left( 1-frac k n right)^n$$



          which is strictly increasing and bounded indeed by AM-GM we have



          • $sqrt[n+1]left(1-fracknright)^n cdot 1 leq fracn
            left(1 - fracknright) + 1n+1 = 1 - frackn+1 $

          and



          • $left( 1-frac k n right)^n=e^nlog left( 1-frac k n
            right)=e^n left( -frac k n-frac k^2 2n^2-frac k^3
            3n^3-ldots right)le e^-k$

          therefore by the monotone convergence theorem $a_n$ has finite limit and since for $k$ fixed



          • $left( 1-frac k n right)^nto e^-k$

          we have



          $$lim_nto inftyfracsumlimits_k=1^n k^nn^n=lim_nto infty sum_k=0^n-1 left( 1-frac k n right)^n=lim_nto infty sum_substackk=0 \ k<n^infty left( 1-frac k n right)^n=sum_k=0^inftye^-k=fracee-1$$






          share|cite|improve this answer























          • (+1) without Hints at last. :P
            – Mariusz Iwaniuk
            Jul 31 at 14:56










          • @MariuszIwaniuk Thanks! The hint was already given! :)
            – gimusi
            Jul 31 at 15:01






          • 2




            In your second line, the $O(frac1n)$ depends on $k$. Therefore you can’t factorize $O(frac1n)$ in the sum without an additional argument.
            – mathcounterexamples.net
            Jul 31 at 15:41











          • @mathcounterexamples.net Yes I think you are right, it's a step I need to revise. Thanks
            – gimusi
            Jul 31 at 15:44










          • You could write the sum as $sum_k=0^infty left(1-fracknright)^n operatorname1(k<n)$, observe that the sequence $left[left(1-fracknright)^n operatorname1(k<n)right]_ninmathbbN$ is increasing and use the monotone convergence theorem to interchange summation and limit.
            – ComplexYetTrivial
            Jul 31 at 16:16













          up vote
          7
          down vote










          up vote
          7
          down vote









          We have that



          $$fracsumlimits_k=1^n k^nn^n=sum_k=1^n left( frac k n right)^n=sum_k=0^n-1 left( frac n-k n right)^n=sum_k=0^n-1 left( 1-frac k n right)^n$$



          then, following the suggestion given by ComplexYetTrivial, let consider



          $$a_n=sum_substackk=0 \ k<n^infty left( 1-frac k n right)^n$$



          which is strictly increasing and bounded indeed by AM-GM we have



          • $sqrt[n+1]left(1-fracknright)^n cdot 1 leq fracn
            left(1 - fracknright) + 1n+1 = 1 - frackn+1 $

          and



          • $left( 1-frac k n right)^n=e^nlog left( 1-frac k n
            right)=e^n left( -frac k n-frac k^2 2n^2-frac k^3
            3n^3-ldots right)le e^-k$

          therefore by the monotone convergence theorem $a_n$ has finite limit and since for $k$ fixed



          • $left( 1-frac k n right)^nto e^-k$

          we have



          $$lim_nto inftyfracsumlimits_k=1^n k^nn^n=lim_nto infty sum_k=0^n-1 left( 1-frac k n right)^n=lim_nto infty sum_substackk=0 \ k<n^infty left( 1-frac k n right)^n=sum_k=0^inftye^-k=fracee-1$$






          share|cite|improve this answer















          We have that



          $$fracsumlimits_k=1^n k^nn^n=sum_k=1^n left( frac k n right)^n=sum_k=0^n-1 left( frac n-k n right)^n=sum_k=0^n-1 left( 1-frac k n right)^n$$



          then, following the suggestion given by ComplexYetTrivial, let consider



          $$a_n=sum_substackk=0 \ k<n^infty left( 1-frac k n right)^n$$



          which is strictly increasing and bounded indeed by AM-GM we have



          • $sqrt[n+1]left(1-fracknright)^n cdot 1 leq fracn
            left(1 - fracknright) + 1n+1 = 1 - frackn+1 $

          and



          • $left( 1-frac k n right)^n=e^nlog left( 1-frac k n
            right)=e^n left( -frac k n-frac k^2 2n^2-frac k^3
            3n^3-ldots right)le e^-k$

          therefore by the monotone convergence theorem $a_n$ has finite limit and since for $k$ fixed



          • $left( 1-frac k n right)^nto e^-k$

          we have



          $$lim_nto inftyfracsumlimits_k=1^n k^nn^n=lim_nto infty sum_k=0^n-1 left( 1-frac k n right)^n=lim_nto infty sum_substackk=0 \ k<n^infty left( 1-frac k n right)^n=sum_k=0^inftye^-k=fracee-1$$







          share|cite|improve this answer















          share|cite|improve this answer



          share|cite|improve this answer








          edited Aug 1 at 21:08


























          answered Jul 31 at 14:46









          gimusi

          64.1k73480




          64.1k73480











          • (+1) without Hints at last. :P
            – Mariusz Iwaniuk
            Jul 31 at 14:56










          • @MariuszIwaniuk Thanks! The hint was already given! :)
            – gimusi
            Jul 31 at 15:01






          • 2




            In your second line, the $O(frac1n)$ depends on $k$. Therefore you can’t factorize $O(frac1n)$ in the sum without an additional argument.
            – mathcounterexamples.net
            Jul 31 at 15:41











          • @mathcounterexamples.net Yes I think you are right, it's a step I need to revise. Thanks
            – gimusi
            Jul 31 at 15:44










          • You could write the sum as $sum_k=0^infty left(1-fracknright)^n operatorname1(k<n)$, observe that the sequence $left[left(1-fracknright)^n operatorname1(k<n)right]_ninmathbbN$ is increasing and use the monotone convergence theorem to interchange summation and limit.
            – ComplexYetTrivial
            Jul 31 at 16:16

















          • (+1) without Hints at last. :P
            – Mariusz Iwaniuk
            Jul 31 at 14:56










          • @MariuszIwaniuk Thanks! The hint was already given! :)
            – gimusi
            Jul 31 at 15:01






          • 2




            In your second line, the $O(frac1n)$ depends on $k$. Therefore you can’t factorize $O(frac1n)$ in the sum without an additional argument.
            – mathcounterexamples.net
            Jul 31 at 15:41











          • @mathcounterexamples.net Yes I think you are right, it's a step I need to revise. Thanks
            – gimusi
            Jul 31 at 15:44










          • You could write the sum as $sum_k=0^infty left(1-fracknright)^n operatorname1(k<n)$, observe that the sequence $left[left(1-fracknright)^n operatorname1(k<n)right]_ninmathbbN$ is increasing and use the monotone convergence theorem to interchange summation and limit.
            – ComplexYetTrivial
            Jul 31 at 16:16
















          (+1) without Hints at last. :P
          – Mariusz Iwaniuk
          Jul 31 at 14:56




          (+1) without Hints at last. :P
          – Mariusz Iwaniuk
          Jul 31 at 14:56












          @MariuszIwaniuk Thanks! The hint was already given! :)
          – gimusi
          Jul 31 at 15:01




          @MariuszIwaniuk Thanks! The hint was already given! :)
          – gimusi
          Jul 31 at 15:01




          2




          2




          In your second line, the $O(frac1n)$ depends on $k$. Therefore you can’t factorize $O(frac1n)$ in the sum without an additional argument.
          – mathcounterexamples.net
          Jul 31 at 15:41





          In your second line, the $O(frac1n)$ depends on $k$. Therefore you can’t factorize $O(frac1n)$ in the sum without an additional argument.
          – mathcounterexamples.net
          Jul 31 at 15:41













          @mathcounterexamples.net Yes I think you are right, it's a step I need to revise. Thanks
          – gimusi
          Jul 31 at 15:44




          @mathcounterexamples.net Yes I think you are right, it's a step I need to revise. Thanks
          – gimusi
          Jul 31 at 15:44












          You could write the sum as $sum_k=0^infty left(1-fracknright)^n operatorname1(k<n)$, observe that the sequence $left[left(1-fracknright)^n operatorname1(k<n)right]_ninmathbbN$ is increasing and use the monotone convergence theorem to interchange summation and limit.
          – ComplexYetTrivial
          Jul 31 at 16:16





          You could write the sum as $sum_k=0^infty left(1-fracknright)^n operatorname1(k<n)$, observe that the sequence $left[left(1-fracknright)^n operatorname1(k<n)right]_ninmathbbN$ is increasing and use the monotone convergence theorem to interchange summation and limit.
          – ComplexYetTrivial
          Jul 31 at 16:16













           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2868069%2ffind-limit-lim-n-to-infty-frac-sum-k-1n-knnn%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What is the equation of a 3D cone with generalised tilt?

          Color the edges and diagonals of a regular polygon

          Relationship between determinant of matrix and determinant of adjoint?