Calculating $partial_t|f(t,z)|^2$ with $tinmathbb R$, $zinmathbb C$ and $f(t,z)inmathbb C$
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Let $f: mathbb Rtimesmathbb Cto mathbb C$ be differentiable. What is the derivative of $|f(t,z)|^2$ w.r.t. $tinmathbb R$, i.e. how do you calculate $partial_t |f(t,z)|^2$?
I've tried to use $|f(t,z)|^2=Re(f(t,z))^2+Im(f(t,z))^2$ and hence $partial_t |f(t,z)|^2=2Re(f(t,z))partial_tf(t,z)+2Im(f(t,z))partial_tf(t,z)$ which doesn't seem to be right since it's complex valued now. Any hints?
calculus real-analysis complex-analysis
add a comment |Â
up vote
0
down vote
favorite
Let $f: mathbb Rtimesmathbb Cto mathbb C$ be differentiable. What is the derivative of $|f(t,z)|^2$ w.r.t. $tinmathbb R$, i.e. how do you calculate $partial_t |f(t,z)|^2$?
I've tried to use $|f(t,z)|^2=Re(f(t,z))^2+Im(f(t,z))^2$ and hence $partial_t |f(t,z)|^2=2Re(f(t,z))partial_tf(t,z)+2Im(f(t,z))partial_tf(t,z)$ which doesn't seem to be right since it's complex valued now. Any hints?
calculus real-analysis complex-analysis
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $f: mathbb Rtimesmathbb Cto mathbb C$ be differentiable. What is the derivative of $|f(t,z)|^2$ w.r.t. $tinmathbb R$, i.e. how do you calculate $partial_t |f(t,z)|^2$?
I've tried to use $|f(t,z)|^2=Re(f(t,z))^2+Im(f(t,z))^2$ and hence $partial_t |f(t,z)|^2=2Re(f(t,z))partial_tf(t,z)+2Im(f(t,z))partial_tf(t,z)$ which doesn't seem to be right since it's complex valued now. Any hints?
calculus real-analysis complex-analysis
Let $f: mathbb Rtimesmathbb Cto mathbb C$ be differentiable. What is the derivative of $|f(t,z)|^2$ w.r.t. $tinmathbb R$, i.e. how do you calculate $partial_t |f(t,z)|^2$?
I've tried to use $|f(t,z)|^2=Re(f(t,z))^2+Im(f(t,z))^2$ and hence $partial_t |f(t,z)|^2=2Re(f(t,z))partial_tf(t,z)+2Im(f(t,z))partial_tf(t,z)$ which doesn't seem to be right since it's complex valued now. Any hints?
calculus real-analysis complex-analysis
edited Jul 31 at 13:00
asked Jul 31 at 12:44
leonard
33
33
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
0
down vote
accepted
We have $|f(t,z)|^2=f(t,z)overlinef(t,z)$.
Hence :
$$partial_t|f(t,z)|^2=overlinef(t,z)partial_tf(t,z)+f(t,z)partial_toverlinef(t,z).$$
But :
$$partial_toverlinef(t,z)=overlinepartial_tf(t,z).$$
Finally :
$$partial_t|f(t,z)|^2= 2Releft( overlinef(t,z)partial_tf(t,z)right).$$
PS : not a very convenient formula, but I doubt one can do better without more assumptions.
add a comment |Â
up vote
0
down vote
Actually, $partial_tRe(f(t,z))^2=2Re(f(t,z)) cdot partial_t Re(f(t,z)) = 2Re(f(t,z)) cdot Re(partial_t f(t,z))$, so
$$partial_t |f(t,z)|^2=2Re(f(t,z)) cdot Re(partial_t f(t,z))+2Im(f(t,z)) cdot Im(partial_t f(t,z))$$
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
We have $|f(t,z)|^2=f(t,z)overlinef(t,z)$.
Hence :
$$partial_t|f(t,z)|^2=overlinef(t,z)partial_tf(t,z)+f(t,z)partial_toverlinef(t,z).$$
But :
$$partial_toverlinef(t,z)=overlinepartial_tf(t,z).$$
Finally :
$$partial_t|f(t,z)|^2= 2Releft( overlinef(t,z)partial_tf(t,z)right).$$
PS : not a very convenient formula, but I doubt one can do better without more assumptions.
add a comment |Â
up vote
0
down vote
accepted
We have $|f(t,z)|^2=f(t,z)overlinef(t,z)$.
Hence :
$$partial_t|f(t,z)|^2=overlinef(t,z)partial_tf(t,z)+f(t,z)partial_toverlinef(t,z).$$
But :
$$partial_toverlinef(t,z)=overlinepartial_tf(t,z).$$
Finally :
$$partial_t|f(t,z)|^2= 2Releft( overlinef(t,z)partial_tf(t,z)right).$$
PS : not a very convenient formula, but I doubt one can do better without more assumptions.
add a comment |Â
up vote
0
down vote
accepted
up vote
0
down vote
accepted
We have $|f(t,z)|^2=f(t,z)overlinef(t,z)$.
Hence :
$$partial_t|f(t,z)|^2=overlinef(t,z)partial_tf(t,z)+f(t,z)partial_toverlinef(t,z).$$
But :
$$partial_toverlinef(t,z)=overlinepartial_tf(t,z).$$
Finally :
$$partial_t|f(t,z)|^2= 2Releft( overlinef(t,z)partial_tf(t,z)right).$$
PS : not a very convenient formula, but I doubt one can do better without more assumptions.
We have $|f(t,z)|^2=f(t,z)overlinef(t,z)$.
Hence :
$$partial_t|f(t,z)|^2=overlinef(t,z)partial_tf(t,z)+f(t,z)partial_toverlinef(t,z).$$
But :
$$partial_toverlinef(t,z)=overlinepartial_tf(t,z).$$
Finally :
$$partial_t|f(t,z)|^2= 2Releft( overlinef(t,z)partial_tf(t,z)right).$$
PS : not a very convenient formula, but I doubt one can do better without more assumptions.
answered Jul 31 at 13:03
nicomezi
3,3871818
3,3871818
add a comment |Â
add a comment |Â
up vote
0
down vote
Actually, $partial_tRe(f(t,z))^2=2Re(f(t,z)) cdot partial_t Re(f(t,z)) = 2Re(f(t,z)) cdot Re(partial_t f(t,z))$, so
$$partial_t |f(t,z)|^2=2Re(f(t,z)) cdot Re(partial_t f(t,z))+2Im(f(t,z)) cdot Im(partial_t f(t,z))$$
add a comment |Â
up vote
0
down vote
Actually, $partial_tRe(f(t,z))^2=2Re(f(t,z)) cdot partial_t Re(f(t,z)) = 2Re(f(t,z)) cdot Re(partial_t f(t,z))$, so
$$partial_t |f(t,z)|^2=2Re(f(t,z)) cdot Re(partial_t f(t,z))+2Im(f(t,z)) cdot Im(partial_t f(t,z))$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Actually, $partial_tRe(f(t,z))^2=2Re(f(t,z)) cdot partial_t Re(f(t,z)) = 2Re(f(t,z)) cdot Re(partial_t f(t,z))$, so
$$partial_t |f(t,z)|^2=2Re(f(t,z)) cdot Re(partial_t f(t,z))+2Im(f(t,z)) cdot Im(partial_t f(t,z))$$
Actually, $partial_tRe(f(t,z))^2=2Re(f(t,z)) cdot partial_t Re(f(t,z)) = 2Re(f(t,z)) cdot Re(partial_t f(t,z))$, so
$$partial_t |f(t,z)|^2=2Re(f(t,z)) cdot Re(partial_t f(t,z))+2Im(f(t,z)) cdot Im(partial_t f(t,z))$$
answered Jul 31 at 13:06
lisyarus
9,89221433
9,89221433
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2868010%2fcalculating-partial-tft-z2-with-t-in-mathbb-r-z-in-mathbb-c-and-f%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password