Ratio of maximum value of an anlytic function to that of its derivative

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite
1












Let $g(z)=(z-w)f(z)$ where $f(z)$ is a non-zero analytic function on and within the unit circle $|z|=1$ with $|w|>1.$ Is it true that
$$displaystylefracmax_=1leqfracf(z)+frac1z-w?$$
If I proceed with
$$displaystylefracmax_=1=fracmax_=1max_=1$$
$$;;;;;;;displaystyleleqfracf(z)max_=1$$
$$leqfracf(z)+frac1z-w,
$$ then whether the last step follows from the immediate previous step? Is there any other alternative method to establish the claim?







share|cite|improve this question























    up vote
    0
    down vote

    favorite
    1












    Let $g(z)=(z-w)f(z)$ where $f(z)$ is a non-zero analytic function on and within the unit circle $|z|=1$ with $|w|>1.$ Is it true that
    $$displaystylefracmax_=1leqfracf(z)+frac1z-w?$$
    If I proceed with
    $$displaystylefracmax_=1=fracmax_=1max_=1$$
    $$;;;;;;;displaystyleleqfracf(z)max_=1$$
    $$leqfracf(z)+frac1z-w,
    $$ then whether the last step follows from the immediate previous step? Is there any other alternative method to establish the claim?







    share|cite|improve this question





















      up vote
      0
      down vote

      favorite
      1









      up vote
      0
      down vote

      favorite
      1






      1





      Let $g(z)=(z-w)f(z)$ where $f(z)$ is a non-zero analytic function on and within the unit circle $|z|=1$ with $|w|>1.$ Is it true that
      $$displaystylefracmax_=1leqfracf(z)+frac1z-w?$$
      If I proceed with
      $$displaystylefracmax_=1=fracmax_=1max_=1$$
      $$;;;;;;;displaystyleleqfracf(z)max_=1$$
      $$leqfracf(z)+frac1z-w,
      $$ then whether the last step follows from the immediate previous step? Is there any other alternative method to establish the claim?







      share|cite|improve this question











      Let $g(z)=(z-w)f(z)$ where $f(z)$ is a non-zero analytic function on and within the unit circle $|z|=1$ with $|w|>1.$ Is it true that
      $$displaystylefracmax_=1leqfracf(z)+frac1z-w?$$
      If I proceed with
      $$displaystylefracmax_=1=fracmax_=1max_=1$$
      $$;;;;;;;displaystyleleqfracf(z)max_=1$$
      $$leqfracf(z)+frac1z-w,
      $$ then whether the last step follows from the immediate previous step? Is there any other alternative method to establish the claim?









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked Jul 31 at 12:01









      user159888

      888




      888

























          active

          oldest

          votes











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2867975%2fratio-of-maximum-value-of-an-anlytic-function-to-that-of-its-derivative%23new-answer', 'question_page');

          );

          Post as a guest



































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes










           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2867975%2fratio-of-maximum-value-of-an-anlytic-function-to-that-of-its-derivative%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What is the equation of a 3D cone with generalised tilt?

          Color the edges and diagonals of a regular polygon

          Relationship between determinant of matrix and determinant of adjoint?