Euler lagrange equations for the following $E(u;f)$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












suppose we have the functional



$$E(u;f) = int_Omega left[ left(u - f right)^2 + g(lVert nabla u rVert^2)lVert nabla u rVert^2right] dxdy = int_Omega mathcalL(x,y,u,u_x,u_y) dxdy$$



Assume all the functions involved are smooth enough, I want to get the euler lagrange equations for the expression above, here $u,f$ are bivariate functions and $g$ is a real function of real variable$



EL equations are given by



$$
fracdEdu = left(fracpartialpartial u - fracd dxfracpartialpartial u_x - fracddyfracpartialpartial u_yright)mathcalL
$$



I'll write this more compactly as
$$
fracdEdu = left(fracpartialpartial u - nabla^T cdot Aright)mathcalL
$$



Where $A$ is defined as the operator



$$
A = beginpmatrix
fracpartialpartial u_x \
fracpartialpartial u_y
endpmatrix =
2 beginpmatrix
u_x \
u_y
endpmatrix fracddlVert nabla urVert^2 = 2 nabla u fracddlVert nabla urVert^2.
$$



Let's observe



$$
fracddlVert nabla urVert^2 mathcalL = fracddlVert nabla urVert^2 left[gleft(lVert nabla u rVert^2 right) lVert nabla u rVert^2 right]
$$



Therefore we can evaluate



$$
nabla^T cdot A mathcalL = 2 nabla^T cdot left( nabla u fracddlVert nabla urVert^2 mathcalL right) = 2nabla^T cdot left[ left(fracddlVert nabla urVert^2 left(gleft(lVert nabla u rVert^2 right) lVert nabla u rVert^2 right) right) nabla uright]
$$



Therefore the Euler-Lgrange equations can be written as



$$
fracdEdu = 2(u - f) - 2nabla^T cdot left[ left(fracddlVert nabla urVert^2 left(gleft(lVert nabla u rVert^2 right) lVert nabla u rVert^2 right) right) nabla uright]
$$



I cannot spot further simplifications, but single quantities should be easily discretized by finite differences.



Is this correct?







share|cite|improve this question

























    up vote
    1
    down vote

    favorite












    suppose we have the functional



    $$E(u;f) = int_Omega left[ left(u - f right)^2 + g(lVert nabla u rVert^2)lVert nabla u rVert^2right] dxdy = int_Omega mathcalL(x,y,u,u_x,u_y) dxdy$$



    Assume all the functions involved are smooth enough, I want to get the euler lagrange equations for the expression above, here $u,f$ are bivariate functions and $g$ is a real function of real variable$



    EL equations are given by



    $$
    fracdEdu = left(fracpartialpartial u - fracd dxfracpartialpartial u_x - fracddyfracpartialpartial u_yright)mathcalL
    $$



    I'll write this more compactly as
    $$
    fracdEdu = left(fracpartialpartial u - nabla^T cdot Aright)mathcalL
    $$



    Where $A$ is defined as the operator



    $$
    A = beginpmatrix
    fracpartialpartial u_x \
    fracpartialpartial u_y
    endpmatrix =
    2 beginpmatrix
    u_x \
    u_y
    endpmatrix fracddlVert nabla urVert^2 = 2 nabla u fracddlVert nabla urVert^2.
    $$



    Let's observe



    $$
    fracddlVert nabla urVert^2 mathcalL = fracddlVert nabla urVert^2 left[gleft(lVert nabla u rVert^2 right) lVert nabla u rVert^2 right]
    $$



    Therefore we can evaluate



    $$
    nabla^T cdot A mathcalL = 2 nabla^T cdot left( nabla u fracddlVert nabla urVert^2 mathcalL right) = 2nabla^T cdot left[ left(fracddlVert nabla urVert^2 left(gleft(lVert nabla u rVert^2 right) lVert nabla u rVert^2 right) right) nabla uright]
    $$



    Therefore the Euler-Lgrange equations can be written as



    $$
    fracdEdu = 2(u - f) - 2nabla^T cdot left[ left(fracddlVert nabla urVert^2 left(gleft(lVert nabla u rVert^2 right) lVert nabla u rVert^2 right) right) nabla uright]
    $$



    I cannot spot further simplifications, but single quantities should be easily discretized by finite differences.



    Is this correct?







    share|cite|improve this question























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      suppose we have the functional



      $$E(u;f) = int_Omega left[ left(u - f right)^2 + g(lVert nabla u rVert^2)lVert nabla u rVert^2right] dxdy = int_Omega mathcalL(x,y,u,u_x,u_y) dxdy$$



      Assume all the functions involved are smooth enough, I want to get the euler lagrange equations for the expression above, here $u,f$ are bivariate functions and $g$ is a real function of real variable$



      EL equations are given by



      $$
      fracdEdu = left(fracpartialpartial u - fracd dxfracpartialpartial u_x - fracddyfracpartialpartial u_yright)mathcalL
      $$



      I'll write this more compactly as
      $$
      fracdEdu = left(fracpartialpartial u - nabla^T cdot Aright)mathcalL
      $$



      Where $A$ is defined as the operator



      $$
      A = beginpmatrix
      fracpartialpartial u_x \
      fracpartialpartial u_y
      endpmatrix =
      2 beginpmatrix
      u_x \
      u_y
      endpmatrix fracddlVert nabla urVert^2 = 2 nabla u fracddlVert nabla urVert^2.
      $$



      Let's observe



      $$
      fracddlVert nabla urVert^2 mathcalL = fracddlVert nabla urVert^2 left[gleft(lVert nabla u rVert^2 right) lVert nabla u rVert^2 right]
      $$



      Therefore we can evaluate



      $$
      nabla^T cdot A mathcalL = 2 nabla^T cdot left( nabla u fracddlVert nabla urVert^2 mathcalL right) = 2nabla^T cdot left[ left(fracddlVert nabla urVert^2 left(gleft(lVert nabla u rVert^2 right) lVert nabla u rVert^2 right) right) nabla uright]
      $$



      Therefore the Euler-Lgrange equations can be written as



      $$
      fracdEdu = 2(u - f) - 2nabla^T cdot left[ left(fracddlVert nabla urVert^2 left(gleft(lVert nabla u rVert^2 right) lVert nabla u rVert^2 right) right) nabla uright]
      $$



      I cannot spot further simplifications, but single quantities should be easily discretized by finite differences.



      Is this correct?







      share|cite|improve this question













      suppose we have the functional



      $$E(u;f) = int_Omega left[ left(u - f right)^2 + g(lVert nabla u rVert^2)lVert nabla u rVert^2right] dxdy = int_Omega mathcalL(x,y,u,u_x,u_y) dxdy$$



      Assume all the functions involved are smooth enough, I want to get the euler lagrange equations for the expression above, here $u,f$ are bivariate functions and $g$ is a real function of real variable$



      EL equations are given by



      $$
      fracdEdu = left(fracpartialpartial u - fracd dxfracpartialpartial u_x - fracddyfracpartialpartial u_yright)mathcalL
      $$



      I'll write this more compactly as
      $$
      fracdEdu = left(fracpartialpartial u - nabla^T cdot Aright)mathcalL
      $$



      Where $A$ is defined as the operator



      $$
      A = beginpmatrix
      fracpartialpartial u_x \
      fracpartialpartial u_y
      endpmatrix =
      2 beginpmatrix
      u_x \
      u_y
      endpmatrix fracddlVert nabla urVert^2 = 2 nabla u fracddlVert nabla urVert^2.
      $$



      Let's observe



      $$
      fracddlVert nabla urVert^2 mathcalL = fracddlVert nabla urVert^2 left[gleft(lVert nabla u rVert^2 right) lVert nabla u rVert^2 right]
      $$



      Therefore we can evaluate



      $$
      nabla^T cdot A mathcalL = 2 nabla^T cdot left( nabla u fracddlVert nabla urVert^2 mathcalL right) = 2nabla^T cdot left[ left(fracddlVert nabla urVert^2 left(gleft(lVert nabla u rVert^2 right) lVert nabla u rVert^2 right) right) nabla uright]
      $$



      Therefore the Euler-Lgrange equations can be written as



      $$
      fracdEdu = 2(u - f) - 2nabla^T cdot left[ left(fracddlVert nabla urVert^2 left(gleft(lVert nabla u rVert^2 right) lVert nabla u rVert^2 right) right) nabla uright]
      $$



      I cannot spot further simplifications, but single quantities should be easily discretized by finite differences.



      Is this correct?









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Aug 1 at 8:45
























      asked Jul 31 at 10:22









      user8469759

      1,4271513




      1,4271513

























          active

          oldest

          votes











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2867904%2feuler-lagrange-equations-for-the-following-euf%23new-answer', 'question_page');

          );

          Post as a guest



































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes










           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2867904%2feuler-lagrange-equations-for-the-following-euf%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What is the equation of a 3D cone with generalised tilt?

          Color the edges and diagonals of a regular polygon

          Relationship between determinant of matrix and determinant of adjoint?