Euler lagrange equations for the following $E(u;f)$
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
suppose we have the functional
$$E(u;f) = int_Omega left[ left(u - f right)^2 + g(lVert nabla u rVert^2)lVert nabla u rVert^2right] dxdy = int_Omega mathcalL(x,y,u,u_x,u_y) dxdy$$
Assume all the functions involved are smooth enough, I want to get the euler lagrange equations for the expression above, here $u,f$ are bivariate functions and $g$ is a real function of real variable$
EL equations are given by
$$
fracdEdu = left(fracpartialpartial u - fracd dxfracpartialpartial u_x - fracddyfracpartialpartial u_yright)mathcalL
$$
I'll write this more compactly as
$$
fracdEdu = left(fracpartialpartial u - nabla^T cdot Aright)mathcalL
$$
Where $A$ is defined as the operator
$$
A = beginpmatrix
fracpartialpartial u_x \
fracpartialpartial u_y
endpmatrix =
2 beginpmatrix
u_x \
u_y
endpmatrix fracddlVert nabla urVert^2 = 2 nabla u fracddlVert nabla urVert^2.
$$
Let's observe
$$
fracddlVert nabla urVert^2 mathcalL = fracddlVert nabla urVert^2 left[gleft(lVert nabla u rVert^2 right) lVert nabla u rVert^2 right]
$$
Therefore we can evaluate
$$
nabla^T cdot A mathcalL = 2 nabla^T cdot left( nabla u fracddlVert nabla urVert^2 mathcalL right) = 2nabla^T cdot left[ left(fracddlVert nabla urVert^2 left(gleft(lVert nabla u rVert^2 right) lVert nabla u rVert^2 right) right) nabla uright]
$$
Therefore the Euler-Lgrange equations can be written as
$$
fracdEdu = 2(u - f) - 2nabla^T cdot left[ left(fracddlVert nabla urVert^2 left(gleft(lVert nabla u rVert^2 right) lVert nabla u rVert^2 right) right) nabla uright]
$$
I cannot spot further simplifications, but single quantities should be easily discretized by finite differences.
Is this correct?
integration differential-equations calculus-of-variations euler-lagrange-equation
add a comment |Â
up vote
1
down vote
favorite
suppose we have the functional
$$E(u;f) = int_Omega left[ left(u - f right)^2 + g(lVert nabla u rVert^2)lVert nabla u rVert^2right] dxdy = int_Omega mathcalL(x,y,u,u_x,u_y) dxdy$$
Assume all the functions involved are smooth enough, I want to get the euler lagrange equations for the expression above, here $u,f$ are bivariate functions and $g$ is a real function of real variable$
EL equations are given by
$$
fracdEdu = left(fracpartialpartial u - fracd dxfracpartialpartial u_x - fracddyfracpartialpartial u_yright)mathcalL
$$
I'll write this more compactly as
$$
fracdEdu = left(fracpartialpartial u - nabla^T cdot Aright)mathcalL
$$
Where $A$ is defined as the operator
$$
A = beginpmatrix
fracpartialpartial u_x \
fracpartialpartial u_y
endpmatrix =
2 beginpmatrix
u_x \
u_y
endpmatrix fracddlVert nabla urVert^2 = 2 nabla u fracddlVert nabla urVert^2.
$$
Let's observe
$$
fracddlVert nabla urVert^2 mathcalL = fracddlVert nabla urVert^2 left[gleft(lVert nabla u rVert^2 right) lVert nabla u rVert^2 right]
$$
Therefore we can evaluate
$$
nabla^T cdot A mathcalL = 2 nabla^T cdot left( nabla u fracddlVert nabla urVert^2 mathcalL right) = 2nabla^T cdot left[ left(fracddlVert nabla urVert^2 left(gleft(lVert nabla u rVert^2 right) lVert nabla u rVert^2 right) right) nabla uright]
$$
Therefore the Euler-Lgrange equations can be written as
$$
fracdEdu = 2(u - f) - 2nabla^T cdot left[ left(fracddlVert nabla urVert^2 left(gleft(lVert nabla u rVert^2 right) lVert nabla u rVert^2 right) right) nabla uright]
$$
I cannot spot further simplifications, but single quantities should be easily discretized by finite differences.
Is this correct?
integration differential-equations calculus-of-variations euler-lagrange-equation
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
suppose we have the functional
$$E(u;f) = int_Omega left[ left(u - f right)^2 + g(lVert nabla u rVert^2)lVert nabla u rVert^2right] dxdy = int_Omega mathcalL(x,y,u,u_x,u_y) dxdy$$
Assume all the functions involved are smooth enough, I want to get the euler lagrange equations for the expression above, here $u,f$ are bivariate functions and $g$ is a real function of real variable$
EL equations are given by
$$
fracdEdu = left(fracpartialpartial u - fracd dxfracpartialpartial u_x - fracddyfracpartialpartial u_yright)mathcalL
$$
I'll write this more compactly as
$$
fracdEdu = left(fracpartialpartial u - nabla^T cdot Aright)mathcalL
$$
Where $A$ is defined as the operator
$$
A = beginpmatrix
fracpartialpartial u_x \
fracpartialpartial u_y
endpmatrix =
2 beginpmatrix
u_x \
u_y
endpmatrix fracddlVert nabla urVert^2 = 2 nabla u fracddlVert nabla urVert^2.
$$
Let's observe
$$
fracddlVert nabla urVert^2 mathcalL = fracddlVert nabla urVert^2 left[gleft(lVert nabla u rVert^2 right) lVert nabla u rVert^2 right]
$$
Therefore we can evaluate
$$
nabla^T cdot A mathcalL = 2 nabla^T cdot left( nabla u fracddlVert nabla urVert^2 mathcalL right) = 2nabla^T cdot left[ left(fracddlVert nabla urVert^2 left(gleft(lVert nabla u rVert^2 right) lVert nabla u rVert^2 right) right) nabla uright]
$$
Therefore the Euler-Lgrange equations can be written as
$$
fracdEdu = 2(u - f) - 2nabla^T cdot left[ left(fracddlVert nabla urVert^2 left(gleft(lVert nabla u rVert^2 right) lVert nabla u rVert^2 right) right) nabla uright]
$$
I cannot spot further simplifications, but single quantities should be easily discretized by finite differences.
Is this correct?
integration differential-equations calculus-of-variations euler-lagrange-equation
suppose we have the functional
$$E(u;f) = int_Omega left[ left(u - f right)^2 + g(lVert nabla u rVert^2)lVert nabla u rVert^2right] dxdy = int_Omega mathcalL(x,y,u,u_x,u_y) dxdy$$
Assume all the functions involved are smooth enough, I want to get the euler lagrange equations for the expression above, here $u,f$ are bivariate functions and $g$ is a real function of real variable$
EL equations are given by
$$
fracdEdu = left(fracpartialpartial u - fracd dxfracpartialpartial u_x - fracddyfracpartialpartial u_yright)mathcalL
$$
I'll write this more compactly as
$$
fracdEdu = left(fracpartialpartial u - nabla^T cdot Aright)mathcalL
$$
Where $A$ is defined as the operator
$$
A = beginpmatrix
fracpartialpartial u_x \
fracpartialpartial u_y
endpmatrix =
2 beginpmatrix
u_x \
u_y
endpmatrix fracddlVert nabla urVert^2 = 2 nabla u fracddlVert nabla urVert^2.
$$
Let's observe
$$
fracddlVert nabla urVert^2 mathcalL = fracddlVert nabla urVert^2 left[gleft(lVert nabla u rVert^2 right) lVert nabla u rVert^2 right]
$$
Therefore we can evaluate
$$
nabla^T cdot A mathcalL = 2 nabla^T cdot left( nabla u fracddlVert nabla urVert^2 mathcalL right) = 2nabla^T cdot left[ left(fracddlVert nabla urVert^2 left(gleft(lVert nabla u rVert^2 right) lVert nabla u rVert^2 right) right) nabla uright]
$$
Therefore the Euler-Lgrange equations can be written as
$$
fracdEdu = 2(u - f) - 2nabla^T cdot left[ left(fracddlVert nabla urVert^2 left(gleft(lVert nabla u rVert^2 right) lVert nabla u rVert^2 right) right) nabla uright]
$$
I cannot spot further simplifications, but single quantities should be easily discretized by finite differences.
Is this correct?
integration differential-equations calculus-of-variations euler-lagrange-equation
edited Aug 1 at 8:45
asked Jul 31 at 10:22
user8469759
1,4271513
1,4271513
add a comment |Â
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2867904%2feuler-lagrange-equations-for-the-following-euf%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password