Can this function's positivity $forall t gt 5.56..$ be criteria for the Riemann hypothesis?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite
1












Let $Z left( t right) =rm e^i left( -i/2 left( it lnGamma
left( 1/4+i/2t right) -it ln Gamma left( 1/4-i/2t right)
right) -1/2,ln left( pi right) t right) zeta left( 1/2+
it right) $



be the Hardy Z function



then define the integral of the logarithmic derivative of Z



$R(t)=frac 1pi int
!frac frac rm drm dtZ left( t right) Z left( t
right) ,rm dt=frac -1/2,it lnGamma left( 1/4-i/2t right) +1/2,it lnGamma
left( 1/4+i/2t right) +ln left( zeta left( 1/2+it right)
right) -i/2ln left( pi right) tpi $



then let



$G(t)=- left( frac rm d^2rm dt^2R left( t right)
right) ^-1=-8,frac left( zeta left( 1/2+it right)
right) ^2pi Psi left( 1,1/4-i/2t right) left( zeta
left( 1/2+it right) right) ^2-Psi left( 1,1/4+i/2t right)
left( zeta left( 1/2+it right) right) ^2-8,zeta left( 2,
1/2+it right) zeta left( 1/2+it right) +8, left( zeta left(
1,1/2+it right) right) ^2$



where $Psi(1,x)$ is the 1st derivative of the digamma function and $zeta(n,t$) is the n-th derivative of the Riemann zeta function.



The function G(t) has an essential singularity inside the range



$(5.56057204723220 , 5.56180573101957)$



I believe that if there was a root of Zeta off the line then it would cause $G(t)<0$ for some $t>5.56...$ . Therefore, can the Riemann hypothesis be stated as the positivity of $G(t)$ for all real t > $5.56...$ ?



enter image description here







share|cite|improve this question























    up vote
    0
    down vote

    favorite
    1












    Let $Z left( t right) =rm e^i left( -i/2 left( it lnGamma
    left( 1/4+i/2t right) -it ln Gamma left( 1/4-i/2t right)
    right) -1/2,ln left( pi right) t right) zeta left( 1/2+
    it right) $



    be the Hardy Z function



    then define the integral of the logarithmic derivative of Z



    $R(t)=frac 1pi int
    !frac frac rm drm dtZ left( t right) Z left( t
    right) ,rm dt=frac -1/2,it lnGamma left( 1/4-i/2t right) +1/2,it lnGamma
    left( 1/4+i/2t right) +ln left( zeta left( 1/2+it right)
    right) -i/2ln left( pi right) tpi $



    then let



    $G(t)=- left( frac rm d^2rm dt^2R left( t right)
    right) ^-1=-8,frac left( zeta left( 1/2+it right)
    right) ^2pi Psi left( 1,1/4-i/2t right) left( zeta
    left( 1/2+it right) right) ^2-Psi left( 1,1/4+i/2t right)
    left( zeta left( 1/2+it right) right) ^2-8,zeta left( 2,
    1/2+it right) zeta left( 1/2+it right) +8, left( zeta left(
    1,1/2+it right) right) ^2$



    where $Psi(1,x)$ is the 1st derivative of the digamma function and $zeta(n,t$) is the n-th derivative of the Riemann zeta function.



    The function G(t) has an essential singularity inside the range



    $(5.56057204723220 , 5.56180573101957)$



    I believe that if there was a root of Zeta off the line then it would cause $G(t)<0$ for some $t>5.56...$ . Therefore, can the Riemann hypothesis be stated as the positivity of $G(t)$ for all real t > $5.56...$ ?



    enter image description here







    share|cite|improve this question





















      up vote
      0
      down vote

      favorite
      1









      up vote
      0
      down vote

      favorite
      1






      1





      Let $Z left( t right) =rm e^i left( -i/2 left( it lnGamma
      left( 1/4+i/2t right) -it ln Gamma left( 1/4-i/2t right)
      right) -1/2,ln left( pi right) t right) zeta left( 1/2+
      it right) $



      be the Hardy Z function



      then define the integral of the logarithmic derivative of Z



      $R(t)=frac 1pi int
      !frac frac rm drm dtZ left( t right) Z left( t
      right) ,rm dt=frac -1/2,it lnGamma left( 1/4-i/2t right) +1/2,it lnGamma
      left( 1/4+i/2t right) +ln left( zeta left( 1/2+it right)
      right) -i/2ln left( pi right) tpi $



      then let



      $G(t)=- left( frac rm d^2rm dt^2R left( t right)
      right) ^-1=-8,frac left( zeta left( 1/2+it right)
      right) ^2pi Psi left( 1,1/4-i/2t right) left( zeta
      left( 1/2+it right) right) ^2-Psi left( 1,1/4+i/2t right)
      left( zeta left( 1/2+it right) right) ^2-8,zeta left( 2,
      1/2+it right) zeta left( 1/2+it right) +8, left( zeta left(
      1,1/2+it right) right) ^2$



      where $Psi(1,x)$ is the 1st derivative of the digamma function and $zeta(n,t$) is the n-th derivative of the Riemann zeta function.



      The function G(t) has an essential singularity inside the range



      $(5.56057204723220 , 5.56180573101957)$



      I believe that if there was a root of Zeta off the line then it would cause $G(t)<0$ for some $t>5.56...$ . Therefore, can the Riemann hypothesis be stated as the positivity of $G(t)$ for all real t > $5.56...$ ?



      enter image description here







      share|cite|improve this question











      Let $Z left( t right) =rm e^i left( -i/2 left( it lnGamma
      left( 1/4+i/2t right) -it ln Gamma left( 1/4-i/2t right)
      right) -1/2,ln left( pi right) t right) zeta left( 1/2+
      it right) $



      be the Hardy Z function



      then define the integral of the logarithmic derivative of Z



      $R(t)=frac 1pi int
      !frac frac rm drm dtZ left( t right) Z left( t
      right) ,rm dt=frac -1/2,it lnGamma left( 1/4-i/2t right) +1/2,it lnGamma
      left( 1/4+i/2t right) +ln left( zeta left( 1/2+it right)
      right) -i/2ln left( pi right) tpi $



      then let



      $G(t)=- left( frac rm d^2rm dt^2R left( t right)
      right) ^-1=-8,frac left( zeta left( 1/2+it right)
      right) ^2pi Psi left( 1,1/4-i/2t right) left( zeta
      left( 1/2+it right) right) ^2-Psi left( 1,1/4+i/2t right)
      left( zeta left( 1/2+it right) right) ^2-8,zeta left( 2,
      1/2+it right) zeta left( 1/2+it right) +8, left( zeta left(
      1,1/2+it right) right) ^2$



      where $Psi(1,x)$ is the 1st derivative of the digamma function and $zeta(n,t$) is the n-th derivative of the Riemann zeta function.



      The function G(t) has an essential singularity inside the range



      $(5.56057204723220 , 5.56180573101957)$



      I believe that if there was a root of Zeta off the line then it would cause $G(t)<0$ for some $t>5.56...$ . Therefore, can the Riemann hypothesis be stated as the positivity of $G(t)$ for all real t > $5.56...$ ?



      enter image description here









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked 6 hours ago









      crow

      485315




      485315

























          active

          oldest

          votes











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2873246%2fcan-this-functions-positivity-forall-t-gt-5-56-be-criteria-for-the-rieman%23new-answer', 'question_page');

          );

          Post as a guest



































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes










           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2873246%2fcan-this-functions-positivity-forall-t-gt-5-56-be-criteria-for-the-rieman%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What is the equation of a 3D cone with generalised tilt?

          Color the edges and diagonals of a regular polygon

          Relationship between determinant of matrix and determinant of adjoint?