Can this function's positivity $forall t gt 5.56..$ be criteria for the Riemann hypothesis?
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Let $Z left( t right) =rm e^i left( -i/2 left( it lnGamma
left( 1/4+i/2t right) -it ln Gamma left( 1/4-i/2t right)
right) -1/2,ln left( pi right) t right) zeta left( 1/2+
it right) $
be the Hardy Z function
then define the integral of the logarithmic derivative of Z
$R(t)=frac 1pi int
!frac frac rm drm dtZ left( t right) Z left( t
right) ,rm dt=frac -1/2,it lnGamma left( 1/4-i/2t right) +1/2,it lnGamma
left( 1/4+i/2t right) +ln left( zeta left( 1/2+it right)
right) -i/2ln left( pi right) tpi $
then let
$G(t)=- left( frac rm d^2rm dt^2R left( t right)
right) ^-1=-8,frac left( zeta left( 1/2+it right)
right) ^2pi Psi left( 1,1/4-i/2t right) left( zeta
left( 1/2+it right) right) ^2-Psi left( 1,1/4+i/2t right)
left( zeta left( 1/2+it right) right) ^2-8,zeta left( 2,
1/2+it right) zeta left( 1/2+it right) +8, left( zeta left(
1,1/2+it right) right) ^2$
where $Psi(1,x)$ is the 1st derivative of the digamma function and $zeta(n,t$) is the n-th derivative of the Riemann zeta function.
The function G(t) has an essential singularity inside the range
$(5.56057204723220 , 5.56180573101957)$
I believe that if there was a root of Zeta off the line then it would cause $G(t)<0$ for some $t>5.56...$ . Therefore, can the Riemann hypothesis be stated as the positivity of $G(t)$ for all real t > $5.56...$ ?
complex-analysis derivatives logarithms riemann-zeta laplacian
add a comment |Â
up vote
0
down vote
favorite
Let $Z left( t right) =rm e^i left( -i/2 left( it lnGamma
left( 1/4+i/2t right) -it ln Gamma left( 1/4-i/2t right)
right) -1/2,ln left( pi right) t right) zeta left( 1/2+
it right) $
be the Hardy Z function
then define the integral of the logarithmic derivative of Z
$R(t)=frac 1pi int
!frac frac rm drm dtZ left( t right) Z left( t
right) ,rm dt=frac -1/2,it lnGamma left( 1/4-i/2t right) +1/2,it lnGamma
left( 1/4+i/2t right) +ln left( zeta left( 1/2+it right)
right) -i/2ln left( pi right) tpi $
then let
$G(t)=- left( frac rm d^2rm dt^2R left( t right)
right) ^-1=-8,frac left( zeta left( 1/2+it right)
right) ^2pi Psi left( 1,1/4-i/2t right) left( zeta
left( 1/2+it right) right) ^2-Psi left( 1,1/4+i/2t right)
left( zeta left( 1/2+it right) right) ^2-8,zeta left( 2,
1/2+it right) zeta left( 1/2+it right) +8, left( zeta left(
1,1/2+it right) right) ^2$
where $Psi(1,x)$ is the 1st derivative of the digamma function and $zeta(n,t$) is the n-th derivative of the Riemann zeta function.
The function G(t) has an essential singularity inside the range
$(5.56057204723220 , 5.56180573101957)$
I believe that if there was a root of Zeta off the line then it would cause $G(t)<0$ for some $t>5.56...$ . Therefore, can the Riemann hypothesis be stated as the positivity of $G(t)$ for all real t > $5.56...$ ?
complex-analysis derivatives logarithms riemann-zeta laplacian
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $Z left( t right) =rm e^i left( -i/2 left( it lnGamma
left( 1/4+i/2t right) -it ln Gamma left( 1/4-i/2t right)
right) -1/2,ln left( pi right) t right) zeta left( 1/2+
it right) $
be the Hardy Z function
then define the integral of the logarithmic derivative of Z
$R(t)=frac 1pi int
!frac frac rm drm dtZ left( t right) Z left( t
right) ,rm dt=frac -1/2,it lnGamma left( 1/4-i/2t right) +1/2,it lnGamma
left( 1/4+i/2t right) +ln left( zeta left( 1/2+it right)
right) -i/2ln left( pi right) tpi $
then let
$G(t)=- left( frac rm d^2rm dt^2R left( t right)
right) ^-1=-8,frac left( zeta left( 1/2+it right)
right) ^2pi Psi left( 1,1/4-i/2t right) left( zeta
left( 1/2+it right) right) ^2-Psi left( 1,1/4+i/2t right)
left( zeta left( 1/2+it right) right) ^2-8,zeta left( 2,
1/2+it right) zeta left( 1/2+it right) +8, left( zeta left(
1,1/2+it right) right) ^2$
where $Psi(1,x)$ is the 1st derivative of the digamma function and $zeta(n,t$) is the n-th derivative of the Riemann zeta function.
The function G(t) has an essential singularity inside the range
$(5.56057204723220 , 5.56180573101957)$
I believe that if there was a root of Zeta off the line then it would cause $G(t)<0$ for some $t>5.56...$ . Therefore, can the Riemann hypothesis be stated as the positivity of $G(t)$ for all real t > $5.56...$ ?
complex-analysis derivatives logarithms riemann-zeta laplacian
Let $Z left( t right) =rm e^i left( -i/2 left( it lnGamma
left( 1/4+i/2t right) -it ln Gamma left( 1/4-i/2t right)
right) -1/2,ln left( pi right) t right) zeta left( 1/2+
it right) $
be the Hardy Z function
then define the integral of the logarithmic derivative of Z
$R(t)=frac 1pi int
!frac frac rm drm dtZ left( t right) Z left( t
right) ,rm dt=frac -1/2,it lnGamma left( 1/4-i/2t right) +1/2,it lnGamma
left( 1/4+i/2t right) +ln left( zeta left( 1/2+it right)
right) -i/2ln left( pi right) tpi $
then let
$G(t)=- left( frac rm d^2rm dt^2R left( t right)
right) ^-1=-8,frac left( zeta left( 1/2+it right)
right) ^2pi Psi left( 1,1/4-i/2t right) left( zeta
left( 1/2+it right) right) ^2-Psi left( 1,1/4+i/2t right)
left( zeta left( 1/2+it right) right) ^2-8,zeta left( 2,
1/2+it right) zeta left( 1/2+it right) +8, left( zeta left(
1,1/2+it right) right) ^2$
where $Psi(1,x)$ is the 1st derivative of the digamma function and $zeta(n,t$) is the n-th derivative of the Riemann zeta function.
The function G(t) has an essential singularity inside the range
$(5.56057204723220 , 5.56180573101957)$
I believe that if there was a root of Zeta off the line then it would cause $G(t)<0$ for some $t>5.56...$ . Therefore, can the Riemann hypothesis be stated as the positivity of $G(t)$ for all real t > $5.56...$ ?
complex-analysis derivatives logarithms riemann-zeta laplacian
asked 6 hours ago
crow
485315
485315
add a comment |Â
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2873246%2fcan-this-functions-positivity-forall-t-gt-5-56-be-criteria-for-the-rieman%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password