Evaluating matrix integral

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite
1












Context: This integral is part of the calculation of the step response to a linear system using the convolution equation, found in this book (pg. 150).



The part that is bugging me is the following integral:



$$
int_0^t e^A(t-tau) d tau,
$$
where $A$ is a matrix and $e^A(t-tau)$ is the matrix exponential.



My approach was:



$$
int_0^t e^A(t-tau) dtau = int_0^t e^Ate^-Atau dtau = e^Atint_0^t e^-Atau dtau = -e^AtA^-1(e^-At - I),
$$



where I used the property that $e^A+B = e^Ae^B$ when $AB=BA$.



However, the author does the following:
$$
int_0^t e^A(t-tau) d tau = int_0^t e^Asigma dsigma = A^-1(e^At - I).
$$



I do not understand why my approach is wrong and why the author is allowed to do what he did.







share|cite|improve this question





















  • $t$ and $tau$ are scalars.
    – pedroszattoni
    Jul 31 at 17:52














up vote
1
down vote

favorite
1












Context: This integral is part of the calculation of the step response to a linear system using the convolution equation, found in this book (pg. 150).



The part that is bugging me is the following integral:



$$
int_0^t e^A(t-tau) d tau,
$$
where $A$ is a matrix and $e^A(t-tau)$ is the matrix exponential.



My approach was:



$$
int_0^t e^A(t-tau) dtau = int_0^t e^Ate^-Atau dtau = e^Atint_0^t e^-Atau dtau = -e^AtA^-1(e^-At - I),
$$



where I used the property that $e^A+B = e^Ae^B$ when $AB=BA$.



However, the author does the following:
$$
int_0^t e^A(t-tau) d tau = int_0^t e^Asigma dsigma = A^-1(e^At - I).
$$



I do not understand why my approach is wrong and why the author is allowed to do what he did.







share|cite|improve this question





















  • $t$ and $tau$ are scalars.
    – pedroszattoni
    Jul 31 at 17:52












up vote
1
down vote

favorite
1









up vote
1
down vote

favorite
1






1





Context: This integral is part of the calculation of the step response to a linear system using the convolution equation, found in this book (pg. 150).



The part that is bugging me is the following integral:



$$
int_0^t e^A(t-tau) d tau,
$$
where $A$ is a matrix and $e^A(t-tau)$ is the matrix exponential.



My approach was:



$$
int_0^t e^A(t-tau) dtau = int_0^t e^Ate^-Atau dtau = e^Atint_0^t e^-Atau dtau = -e^AtA^-1(e^-At - I),
$$



where I used the property that $e^A+B = e^Ae^B$ when $AB=BA$.



However, the author does the following:
$$
int_0^t e^A(t-tau) d tau = int_0^t e^Asigma dsigma = A^-1(e^At - I).
$$



I do not understand why my approach is wrong and why the author is allowed to do what he did.







share|cite|improve this question













Context: This integral is part of the calculation of the step response to a linear system using the convolution equation, found in this book (pg. 150).



The part that is bugging me is the following integral:



$$
int_0^t e^A(t-tau) d tau,
$$
where $A$ is a matrix and $e^A(t-tau)$ is the matrix exponential.



My approach was:



$$
int_0^t e^A(t-tau) dtau = int_0^t e^Ate^-Atau dtau = e^Atint_0^t e^-Atau dtau = -e^AtA^-1(e^-At - I),
$$



where I used the property that $e^A+B = e^Ae^B$ when $AB=BA$.



However, the author does the following:
$$
int_0^t e^A(t-tau) d tau = int_0^t e^Asigma dsigma = A^-1(e^At - I).
$$



I do not understand why my approach is wrong and why the author is allowed to do what he did.









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 31 at 17:59
























asked Jul 31 at 17:45









pedroszattoni

14819




14819











  • $t$ and $tau$ are scalars.
    – pedroszattoni
    Jul 31 at 17:52
















  • $t$ and $tau$ are scalars.
    – pedroszattoni
    Jul 31 at 17:52















$t$ and $tau$ are scalars.
– pedroszattoni
Jul 31 at 17:52




$t$ and $tau$ are scalars.
– pedroszattoni
Jul 31 at 17:52










1 Answer
1






active

oldest

votes

















up vote
3
down vote



accepted










We assume of course that $A$ is invertible. The author uses the substitution $tau = t - sigma$ , the identity $A^-1 A = I$, the linearity of the integral and the property $fracmathrmdmathrmd t mathrme^t A = A mathrme^t A$ of the matrix exponential to get
beginalign
int limits_0^t mathrme^(t-tau) A , mathrmd tau &= int limits_0^t mathrme^sigma A , mathrmd sigma = int limits_0^t I , mathrme^sigma A , mathrmd sigma = int limits_0^t A^-1 A
,mathrme^sigma A , mathrmd sigma \
&= A^-1 int limits_0^t A , mathrme^sigma A , mathrmd sigma = A^-1 left[mathrme^sigma A right]_sigma = 0^sigma=t = A^-1 left(mathrme^t A - Iright) , .
endalign
Note that since we have $ A^-1 mathrme^t A = mathrme^t A A^-1$, your answer is not wrong, but completely equivalent:
$$ - mathrme^t A A^-1 left(mathrme^-t A - Iright) = - A^-1 mathrme^t A left(mathrme^-t A - Iright)= A^-1 left(mathrme^t A - Iright) , . $$






share|cite|improve this answer





















  • I failed to realize that $ A^-1 mathrme^t A = mathrme^t A A^-1$, which can easily be proved using the definition of the matrix exponential. Thanks!
    – pedroszattoni
    Jul 31 at 19:06










Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);








 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2868292%2fevaluating-matrix-integral%23new-answer', 'question_page');

);

Post as a guest






























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
3
down vote



accepted










We assume of course that $A$ is invertible. The author uses the substitution $tau = t - sigma$ , the identity $A^-1 A = I$, the linearity of the integral and the property $fracmathrmdmathrmd t mathrme^t A = A mathrme^t A$ of the matrix exponential to get
beginalign
int limits_0^t mathrme^(t-tau) A , mathrmd tau &= int limits_0^t mathrme^sigma A , mathrmd sigma = int limits_0^t I , mathrme^sigma A , mathrmd sigma = int limits_0^t A^-1 A
,mathrme^sigma A , mathrmd sigma \
&= A^-1 int limits_0^t A , mathrme^sigma A , mathrmd sigma = A^-1 left[mathrme^sigma A right]_sigma = 0^sigma=t = A^-1 left(mathrme^t A - Iright) , .
endalign
Note that since we have $ A^-1 mathrme^t A = mathrme^t A A^-1$, your answer is not wrong, but completely equivalent:
$$ - mathrme^t A A^-1 left(mathrme^-t A - Iright) = - A^-1 mathrme^t A left(mathrme^-t A - Iright)= A^-1 left(mathrme^t A - Iright) , . $$






share|cite|improve this answer





















  • I failed to realize that $ A^-1 mathrme^t A = mathrme^t A A^-1$, which can easily be proved using the definition of the matrix exponential. Thanks!
    – pedroszattoni
    Jul 31 at 19:06














up vote
3
down vote



accepted










We assume of course that $A$ is invertible. The author uses the substitution $tau = t - sigma$ , the identity $A^-1 A = I$, the linearity of the integral and the property $fracmathrmdmathrmd t mathrme^t A = A mathrme^t A$ of the matrix exponential to get
beginalign
int limits_0^t mathrme^(t-tau) A , mathrmd tau &= int limits_0^t mathrme^sigma A , mathrmd sigma = int limits_0^t I , mathrme^sigma A , mathrmd sigma = int limits_0^t A^-1 A
,mathrme^sigma A , mathrmd sigma \
&= A^-1 int limits_0^t A , mathrme^sigma A , mathrmd sigma = A^-1 left[mathrme^sigma A right]_sigma = 0^sigma=t = A^-1 left(mathrme^t A - Iright) , .
endalign
Note that since we have $ A^-1 mathrme^t A = mathrme^t A A^-1$, your answer is not wrong, but completely equivalent:
$$ - mathrme^t A A^-1 left(mathrme^-t A - Iright) = - A^-1 mathrme^t A left(mathrme^-t A - Iright)= A^-1 left(mathrme^t A - Iright) , . $$






share|cite|improve this answer





















  • I failed to realize that $ A^-1 mathrme^t A = mathrme^t A A^-1$, which can easily be proved using the definition of the matrix exponential. Thanks!
    – pedroszattoni
    Jul 31 at 19:06












up vote
3
down vote



accepted







up vote
3
down vote



accepted






We assume of course that $A$ is invertible. The author uses the substitution $tau = t - sigma$ , the identity $A^-1 A = I$, the linearity of the integral and the property $fracmathrmdmathrmd t mathrme^t A = A mathrme^t A$ of the matrix exponential to get
beginalign
int limits_0^t mathrme^(t-tau) A , mathrmd tau &= int limits_0^t mathrme^sigma A , mathrmd sigma = int limits_0^t I , mathrme^sigma A , mathrmd sigma = int limits_0^t A^-1 A
,mathrme^sigma A , mathrmd sigma \
&= A^-1 int limits_0^t A , mathrme^sigma A , mathrmd sigma = A^-1 left[mathrme^sigma A right]_sigma = 0^sigma=t = A^-1 left(mathrme^t A - Iright) , .
endalign
Note that since we have $ A^-1 mathrme^t A = mathrme^t A A^-1$, your answer is not wrong, but completely equivalent:
$$ - mathrme^t A A^-1 left(mathrme^-t A - Iright) = - A^-1 mathrme^t A left(mathrme^-t A - Iright)= A^-1 left(mathrme^t A - Iright) , . $$






share|cite|improve this answer













We assume of course that $A$ is invertible. The author uses the substitution $tau = t - sigma$ , the identity $A^-1 A = I$, the linearity of the integral and the property $fracmathrmdmathrmd t mathrme^t A = A mathrme^t A$ of the matrix exponential to get
beginalign
int limits_0^t mathrme^(t-tau) A , mathrmd tau &= int limits_0^t mathrme^sigma A , mathrmd sigma = int limits_0^t I , mathrme^sigma A , mathrmd sigma = int limits_0^t A^-1 A
,mathrme^sigma A , mathrmd sigma \
&= A^-1 int limits_0^t A , mathrme^sigma A , mathrmd sigma = A^-1 left[mathrme^sigma A right]_sigma = 0^sigma=t = A^-1 left(mathrme^t A - Iright) , .
endalign
Note that since we have $ A^-1 mathrme^t A = mathrme^t A A^-1$, your answer is not wrong, but completely equivalent:
$$ - mathrme^t A A^-1 left(mathrme^-t A - Iright) = - A^-1 mathrme^t A left(mathrme^-t A - Iright)= A^-1 left(mathrme^t A - Iright) , . $$







share|cite|improve this answer













share|cite|improve this answer



share|cite|improve this answer











answered Jul 31 at 18:27









ComplexYetTrivial

2,602624




2,602624











  • I failed to realize that $ A^-1 mathrme^t A = mathrme^t A A^-1$, which can easily be proved using the definition of the matrix exponential. Thanks!
    – pedroszattoni
    Jul 31 at 19:06
















  • I failed to realize that $ A^-1 mathrme^t A = mathrme^t A A^-1$, which can easily be proved using the definition of the matrix exponential. Thanks!
    – pedroszattoni
    Jul 31 at 19:06















I failed to realize that $ A^-1 mathrme^t A = mathrme^t A A^-1$, which can easily be proved using the definition of the matrix exponential. Thanks!
– pedroszattoni
Jul 31 at 19:06




I failed to realize that $ A^-1 mathrme^t A = mathrme^t A A^-1$, which can easily be proved using the definition of the matrix exponential. Thanks!
– pedroszattoni
Jul 31 at 19:06












 

draft saved


draft discarded


























 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2868292%2fevaluating-matrix-integral%23new-answer', 'question_page');

);

Post as a guest













































































Comments

Popular posts from this blog

What is the equation of a 3D cone with generalised tilt?

Color the edges and diagonals of a regular polygon

Relationship between determinant of matrix and determinant of adjoint?