Evaluating matrix integral
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
Context: This integral is part of the calculation of the step response to a linear system using the convolution equation, found in this book (pg. 150).
The part that is bugging me is the following integral:
$$
int_0^t e^A(t-tau) d tau,
$$
where $A$ is a matrix and $e^A(t-tau)$ is the matrix exponential.
My approach was:
$$
int_0^t e^A(t-tau) dtau = int_0^t e^Ate^-Atau dtau = e^Atint_0^t e^-Atau dtau = -e^AtA^-1(e^-At - I),
$$
where I used the property that $e^A+B = e^Ae^B$ when $AB=BA$.
However, the author does the following:
$$
int_0^t e^A(t-tau) d tau = int_0^t e^Asigma dsigma = A^-1(e^At - I).
$$
I do not understand why my approach is wrong and why the author is allowed to do what he did.
linear-algebra integration dynamical-systems matrix-calculus convolution
add a comment |Â
up vote
1
down vote
favorite
Context: This integral is part of the calculation of the step response to a linear system using the convolution equation, found in this book (pg. 150).
The part that is bugging me is the following integral:
$$
int_0^t e^A(t-tau) d tau,
$$
where $A$ is a matrix and $e^A(t-tau)$ is the matrix exponential.
My approach was:
$$
int_0^t e^A(t-tau) dtau = int_0^t e^Ate^-Atau dtau = e^Atint_0^t e^-Atau dtau = -e^AtA^-1(e^-At - I),
$$
where I used the property that $e^A+B = e^Ae^B$ when $AB=BA$.
However, the author does the following:
$$
int_0^t e^A(t-tau) d tau = int_0^t e^Asigma dsigma = A^-1(e^At - I).
$$
I do not understand why my approach is wrong and why the author is allowed to do what he did.
linear-algebra integration dynamical-systems matrix-calculus convolution
$t$ and $tau$ are scalars.
– pedroszattoni
Jul 31 at 17:52
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Context: This integral is part of the calculation of the step response to a linear system using the convolution equation, found in this book (pg. 150).
The part that is bugging me is the following integral:
$$
int_0^t e^A(t-tau) d tau,
$$
where $A$ is a matrix and $e^A(t-tau)$ is the matrix exponential.
My approach was:
$$
int_0^t e^A(t-tau) dtau = int_0^t e^Ate^-Atau dtau = e^Atint_0^t e^-Atau dtau = -e^AtA^-1(e^-At - I),
$$
where I used the property that $e^A+B = e^Ae^B$ when $AB=BA$.
However, the author does the following:
$$
int_0^t e^A(t-tau) d tau = int_0^t e^Asigma dsigma = A^-1(e^At - I).
$$
I do not understand why my approach is wrong and why the author is allowed to do what he did.
linear-algebra integration dynamical-systems matrix-calculus convolution
Context: This integral is part of the calculation of the step response to a linear system using the convolution equation, found in this book (pg. 150).
The part that is bugging me is the following integral:
$$
int_0^t e^A(t-tau) d tau,
$$
where $A$ is a matrix and $e^A(t-tau)$ is the matrix exponential.
My approach was:
$$
int_0^t e^A(t-tau) dtau = int_0^t e^Ate^-Atau dtau = e^Atint_0^t e^-Atau dtau = -e^AtA^-1(e^-At - I),
$$
where I used the property that $e^A+B = e^Ae^B$ when $AB=BA$.
However, the author does the following:
$$
int_0^t e^A(t-tau) d tau = int_0^t e^Asigma dsigma = A^-1(e^At - I).
$$
I do not understand why my approach is wrong and why the author is allowed to do what he did.
linear-algebra integration dynamical-systems matrix-calculus convolution
edited Jul 31 at 17:59
asked Jul 31 at 17:45
pedroszattoni
14819
14819
$t$ and $tau$ are scalars.
– pedroszattoni
Jul 31 at 17:52
add a comment |Â
$t$ and $tau$ are scalars.
– pedroszattoni
Jul 31 at 17:52
$t$ and $tau$ are scalars.
– pedroszattoni
Jul 31 at 17:52
$t$ and $tau$ are scalars.
– pedroszattoni
Jul 31 at 17:52
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
3
down vote
accepted
We assume of course that $A$ is invertible. The author uses the substitution $tau = t - sigma$ , the identity $A^-1 A = I$, the linearity of the integral and the property $fracmathrmdmathrmd t mathrme^t A = A mathrme^t A$ of the matrix exponential to get
beginalign
int limits_0^t mathrme^(t-tau) A , mathrmd tau &= int limits_0^t mathrme^sigma A , mathrmd sigma = int limits_0^t I , mathrme^sigma A , mathrmd sigma = int limits_0^t A^-1 A
,mathrme^sigma A , mathrmd sigma \
&= A^-1 int limits_0^t A , mathrme^sigma A , mathrmd sigma = A^-1 left[mathrme^sigma A right]_sigma = 0^sigma=t = A^-1 left(mathrme^t A - Iright) , .
endalign
Note that since we have $ A^-1 mathrme^t A = mathrme^t A A^-1$, your answer is not wrong, but completely equivalent:
$$ - mathrme^t A A^-1 left(mathrme^-t A - Iright) = - A^-1 mathrme^t A left(mathrme^-t A - Iright)= A^-1 left(mathrme^t A - Iright) , . $$
I failed to realize that $ A^-1 mathrme^t A = mathrme^t A A^-1$, which can easily be proved using the definition of the matrix exponential. Thanks!
– pedroszattoni
Jul 31 at 19:06
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
accepted
We assume of course that $A$ is invertible. The author uses the substitution $tau = t - sigma$ , the identity $A^-1 A = I$, the linearity of the integral and the property $fracmathrmdmathrmd t mathrme^t A = A mathrme^t A$ of the matrix exponential to get
beginalign
int limits_0^t mathrme^(t-tau) A , mathrmd tau &= int limits_0^t mathrme^sigma A , mathrmd sigma = int limits_0^t I , mathrme^sigma A , mathrmd sigma = int limits_0^t A^-1 A
,mathrme^sigma A , mathrmd sigma \
&= A^-1 int limits_0^t A , mathrme^sigma A , mathrmd sigma = A^-1 left[mathrme^sigma A right]_sigma = 0^sigma=t = A^-1 left(mathrme^t A - Iright) , .
endalign
Note that since we have $ A^-1 mathrme^t A = mathrme^t A A^-1$, your answer is not wrong, but completely equivalent:
$$ - mathrme^t A A^-1 left(mathrme^-t A - Iright) = - A^-1 mathrme^t A left(mathrme^-t A - Iright)= A^-1 left(mathrme^t A - Iright) , . $$
I failed to realize that $ A^-1 mathrme^t A = mathrme^t A A^-1$, which can easily be proved using the definition of the matrix exponential. Thanks!
– pedroszattoni
Jul 31 at 19:06
add a comment |Â
up vote
3
down vote
accepted
We assume of course that $A$ is invertible. The author uses the substitution $tau = t - sigma$ , the identity $A^-1 A = I$, the linearity of the integral and the property $fracmathrmdmathrmd t mathrme^t A = A mathrme^t A$ of the matrix exponential to get
beginalign
int limits_0^t mathrme^(t-tau) A , mathrmd tau &= int limits_0^t mathrme^sigma A , mathrmd sigma = int limits_0^t I , mathrme^sigma A , mathrmd sigma = int limits_0^t A^-1 A
,mathrme^sigma A , mathrmd sigma \
&= A^-1 int limits_0^t A , mathrme^sigma A , mathrmd sigma = A^-1 left[mathrme^sigma A right]_sigma = 0^sigma=t = A^-1 left(mathrme^t A - Iright) , .
endalign
Note that since we have $ A^-1 mathrme^t A = mathrme^t A A^-1$, your answer is not wrong, but completely equivalent:
$$ - mathrme^t A A^-1 left(mathrme^-t A - Iright) = - A^-1 mathrme^t A left(mathrme^-t A - Iright)= A^-1 left(mathrme^t A - Iright) , . $$
I failed to realize that $ A^-1 mathrme^t A = mathrme^t A A^-1$, which can easily be proved using the definition of the matrix exponential. Thanks!
– pedroszattoni
Jul 31 at 19:06
add a comment |Â
up vote
3
down vote
accepted
up vote
3
down vote
accepted
We assume of course that $A$ is invertible. The author uses the substitution $tau = t - sigma$ , the identity $A^-1 A = I$, the linearity of the integral and the property $fracmathrmdmathrmd t mathrme^t A = A mathrme^t A$ of the matrix exponential to get
beginalign
int limits_0^t mathrme^(t-tau) A , mathrmd tau &= int limits_0^t mathrme^sigma A , mathrmd sigma = int limits_0^t I , mathrme^sigma A , mathrmd sigma = int limits_0^t A^-1 A
,mathrme^sigma A , mathrmd sigma \
&= A^-1 int limits_0^t A , mathrme^sigma A , mathrmd sigma = A^-1 left[mathrme^sigma A right]_sigma = 0^sigma=t = A^-1 left(mathrme^t A - Iright) , .
endalign
Note that since we have $ A^-1 mathrme^t A = mathrme^t A A^-1$, your answer is not wrong, but completely equivalent:
$$ - mathrme^t A A^-1 left(mathrme^-t A - Iright) = - A^-1 mathrme^t A left(mathrme^-t A - Iright)= A^-1 left(mathrme^t A - Iright) , . $$
We assume of course that $A$ is invertible. The author uses the substitution $tau = t - sigma$ , the identity $A^-1 A = I$, the linearity of the integral and the property $fracmathrmdmathrmd t mathrme^t A = A mathrme^t A$ of the matrix exponential to get
beginalign
int limits_0^t mathrme^(t-tau) A , mathrmd tau &= int limits_0^t mathrme^sigma A , mathrmd sigma = int limits_0^t I , mathrme^sigma A , mathrmd sigma = int limits_0^t A^-1 A
,mathrme^sigma A , mathrmd sigma \
&= A^-1 int limits_0^t A , mathrme^sigma A , mathrmd sigma = A^-1 left[mathrme^sigma A right]_sigma = 0^sigma=t = A^-1 left(mathrme^t A - Iright) , .
endalign
Note that since we have $ A^-1 mathrme^t A = mathrme^t A A^-1$, your answer is not wrong, but completely equivalent:
$$ - mathrme^t A A^-1 left(mathrme^-t A - Iright) = - A^-1 mathrme^t A left(mathrme^-t A - Iright)= A^-1 left(mathrme^t A - Iright) , . $$
answered Jul 31 at 18:27
ComplexYetTrivial
2,602624
2,602624
I failed to realize that $ A^-1 mathrme^t A = mathrme^t A A^-1$, which can easily be proved using the definition of the matrix exponential. Thanks!
– pedroszattoni
Jul 31 at 19:06
add a comment |Â
I failed to realize that $ A^-1 mathrme^t A = mathrme^t A A^-1$, which can easily be proved using the definition of the matrix exponential. Thanks!
– pedroszattoni
Jul 31 at 19:06
I failed to realize that $ A^-1 mathrme^t A = mathrme^t A A^-1$, which can easily be proved using the definition of the matrix exponential. Thanks!
– pedroszattoni
Jul 31 at 19:06
I failed to realize that $ A^-1 mathrme^t A = mathrme^t A A^-1$, which can easily be proved using the definition of the matrix exponential. Thanks!
– pedroszattoni
Jul 31 at 19:06
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2868292%2fevaluating-matrix-integral%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
$t$ and $tau$ are scalars.
– pedroszattoni
Jul 31 at 17:52