Evaluation of $lim_x to 0 fracsin(x+a) -sin(a)sin2x$.

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite
1












I am having trouble proving out the below:




$$lim_x to 0 fracsin(x+a) - sin(a)sin2x$$




I have got as far as below using $sin(a) + sin(b)$ in numerator and $sin(2a)$ in the denominator but am not sure how to expand further, or if these are the right rules to apply.



$$lim_x to 0fracsin(x)cos(a) + sin(a)[cos(x) - 1]2sin(x)cos(x)$$



I need to simplify it down to apply $displaystylelim_x to 0fracsin(x)x$.







share|cite|improve this question





















  • Maybe try to use $sin(x)-sin(y) = 2cdot cosleft(fracx+y2right)sinleft(fracx-y2right)$
    – mrtaurho
    Jul 31 at 21:01










  • Are you allowed to use L'Hopital's rule?
    – Mark
    Jul 31 at 21:02














up vote
1
down vote

favorite
1












I am having trouble proving out the below:




$$lim_x to 0 fracsin(x+a) - sin(a)sin2x$$




I have got as far as below using $sin(a) + sin(b)$ in numerator and $sin(2a)$ in the denominator but am not sure how to expand further, or if these are the right rules to apply.



$$lim_x to 0fracsin(x)cos(a) + sin(a)[cos(x) - 1]2sin(x)cos(x)$$



I need to simplify it down to apply $displaystylelim_x to 0fracsin(x)x$.







share|cite|improve this question





















  • Maybe try to use $sin(x)-sin(y) = 2cdot cosleft(fracx+y2right)sinleft(fracx-y2right)$
    – mrtaurho
    Jul 31 at 21:01










  • Are you allowed to use L'Hopital's rule?
    – Mark
    Jul 31 at 21:02












up vote
1
down vote

favorite
1









up vote
1
down vote

favorite
1






1





I am having trouble proving out the below:




$$lim_x to 0 fracsin(x+a) - sin(a)sin2x$$




I have got as far as below using $sin(a) + sin(b)$ in numerator and $sin(2a)$ in the denominator but am not sure how to expand further, or if these are the right rules to apply.



$$lim_x to 0fracsin(x)cos(a) + sin(a)[cos(x) - 1]2sin(x)cos(x)$$



I need to simplify it down to apply $displaystylelim_x to 0fracsin(x)x$.







share|cite|improve this question













I am having trouble proving out the below:




$$lim_x to 0 fracsin(x+a) - sin(a)sin2x$$




I have got as far as below using $sin(a) + sin(b)$ in numerator and $sin(2a)$ in the denominator but am not sure how to expand further, or if these are the right rules to apply.



$$lim_x to 0fracsin(x)cos(a) + sin(a)[cos(x) - 1]2sin(x)cos(x)$$



I need to simplify it down to apply $displaystylelim_x to 0fracsin(x)x$.









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Aug 1 at 2:23









user 108128

18.9k41544




18.9k41544









asked Jul 31 at 20:58









number8

7717




7717











  • Maybe try to use $sin(x)-sin(y) = 2cdot cosleft(fracx+y2right)sinleft(fracx-y2right)$
    – mrtaurho
    Jul 31 at 21:01










  • Are you allowed to use L'Hopital's rule?
    – Mark
    Jul 31 at 21:02
















  • Maybe try to use $sin(x)-sin(y) = 2cdot cosleft(fracx+y2right)sinleft(fracx-y2right)$
    – mrtaurho
    Jul 31 at 21:01










  • Are you allowed to use L'Hopital's rule?
    – Mark
    Jul 31 at 21:02















Maybe try to use $sin(x)-sin(y) = 2cdot cosleft(fracx+y2right)sinleft(fracx-y2right)$
– mrtaurho
Jul 31 at 21:01




Maybe try to use $sin(x)-sin(y) = 2cdot cosleft(fracx+y2right)sinleft(fracx-y2right)$
– mrtaurho
Jul 31 at 21:01












Are you allowed to use L'Hopital's rule?
– Mark
Jul 31 at 21:02




Are you allowed to use L'Hopital's rule?
– Mark
Jul 31 at 21:02










7 Answers
7






active

oldest

votes

















up vote
1
down vote



accepted










Continue with this:
$$fracsin x cos a2sin xcos x + fracsin a[cos x - 1]2sin xcos x$$
$$fraccos a2cos x - sin afrac2sin^2fracx24sinfracx2cosfracx2cos x$$
$$fraccos a2cos x - sin afracsinfracx22cosfracx2cos x$$
then
$$lim_xto0fraccos a2cos x - sin afracsinfracx22cosfracx2cos x=fraccos a2times1-0=fraccos a2$$






share|cite|improve this answer




























    up vote
    5
    down vote













    $frac dda sin a = lim_limitsxto 0 frac sin (x+a) - sin ax = cos a\
    lim_limitsxto 0 frac sin (x+a) - sin asin 2x = lim_limitsxto 0 frac (sin (x+a) - sin a)xxsin 2x = lim_limitsxto 0 (frac sin (x+a) - sin ax)(frac xsin 2x) = frac 12 cos a $






    share|cite|improve this answer

















    • 2




      First thing I thought of as well. I love approaches that use the definition of a derivative.
      – Sorfosh
      Jul 31 at 21:08

















    up vote
    2
    down vote













    Hint: use that $$sin(x)-sin(y)=2cosleft(fracx+y2right)sinleft(fracx-y2right)$$






    share|cite|improve this answer





















    • mathworld.wolfram.com/ProsthaphaeresisFormulas.html
      – lab bhattacharjee
      Aug 1 at 0:11

















    up vote
    2
    down vote













    Hint:



    Rewrite the quotient as
    $$fracsin(x+a)-sin ax ,fracxsin 2x=fracsin(x+a)-sin ax ,frac2xsin 2xfrac 12,$$
    and observe the first fraction is but a rate of variation from the value $a$.






    share|cite|improve this answer




























      up vote
      2
      down vote













      Write the limit in the following fashion namely
      $$
      lim_x to 0 fracsin(x+a) - sin(a)sin2x=fraclim_xto 0fracsin(a+x)-sin(a)x2lim_xto 0fracsin 2x2x=fraccos a2
      $$






      share|cite|improve this answer




























        up vote
        1
        down vote













        You're doing just fine with your approach. Break it into a sum of limits. The first term is easy. For the second, you need to know
        $$lim_xto 0fraccos x - 1x = lim_xto 0frac(cos x-1)(cos x + 1)x(cos x+1) = - lim_xto 0fracsin^2 xxcdotfrac 1cos x+1.$$ Can you finish from this?






        share|cite|improve this answer




























          up vote
          1
          down vote













          Use the sum to product formula



          $$sin(x)-sin(y) = 2cdot cosleft(fracx+y2right)sinleft(fracx-y2right)$$



          Plugging in $x=x+a$ and $y=a$ leads to



          $$beginalign
          sin(x+a)-sin(a)~&=~2cdot cosleft(frac(x+a)+a2right)sinleft(frac(x+a)-a2right)\
          &=~2cdotcosleft(fracx2+aright)sinleft(fracx2right)
          endalign$$



          Subsitute this into the limit yields to



          $$beginalign
          lim_xto 0frac2cdotcosleft(fracx2+aright)sinleft(fracx2right)2cdotsin(x)cos(x)~&=~lim_xto 0fraccosleft(fracx2+aright)sinleft(fracx2right)sin(x)cos(x)\
          &=~lim_xto 0fraccosleft(fracx2+aright)cos(x)cdotlim_xto 0fracsinleft(fracx2right)x\
          &=~cos(a)~cdotlim_hto 0fracsinleft(hright)2h\
          &=~cos(a)~cdotfrac12lim_hto 0fracsinleft(hright)h\
          &=~fraccos(a)2
          endalign$$



          Where in the end $fracx2$ was substituted by $h$.






          share|cite|improve this answer























            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );








             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2868470%2fevaluation-of-lim-x-to-0-frac-sinxa-sina-sin2x%23new-answer', 'question_page');

            );

            Post as a guest






























            7 Answers
            7






            active

            oldest

            votes








            7 Answers
            7






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            1
            down vote



            accepted










            Continue with this:
            $$fracsin x cos a2sin xcos x + fracsin a[cos x - 1]2sin xcos x$$
            $$fraccos a2cos x - sin afrac2sin^2fracx24sinfracx2cosfracx2cos x$$
            $$fraccos a2cos x - sin afracsinfracx22cosfracx2cos x$$
            then
            $$lim_xto0fraccos a2cos x - sin afracsinfracx22cosfracx2cos x=fraccos a2times1-0=fraccos a2$$






            share|cite|improve this answer

























              up vote
              1
              down vote



              accepted










              Continue with this:
              $$fracsin x cos a2sin xcos x + fracsin a[cos x - 1]2sin xcos x$$
              $$fraccos a2cos x - sin afrac2sin^2fracx24sinfracx2cosfracx2cos x$$
              $$fraccos a2cos x - sin afracsinfracx22cosfracx2cos x$$
              then
              $$lim_xto0fraccos a2cos x - sin afracsinfracx22cosfracx2cos x=fraccos a2times1-0=fraccos a2$$






              share|cite|improve this answer























                up vote
                1
                down vote



                accepted







                up vote
                1
                down vote



                accepted






                Continue with this:
                $$fracsin x cos a2sin xcos x + fracsin a[cos x - 1]2sin xcos x$$
                $$fraccos a2cos x - sin afrac2sin^2fracx24sinfracx2cosfracx2cos x$$
                $$fraccos a2cos x - sin afracsinfracx22cosfracx2cos x$$
                then
                $$lim_xto0fraccos a2cos x - sin afracsinfracx22cosfracx2cos x=fraccos a2times1-0=fraccos a2$$






                share|cite|improve this answer













                Continue with this:
                $$fracsin x cos a2sin xcos x + fracsin a[cos x - 1]2sin xcos x$$
                $$fraccos a2cos x - sin afrac2sin^2fracx24sinfracx2cosfracx2cos x$$
                $$fraccos a2cos x - sin afracsinfracx22cosfracx2cos x$$
                then
                $$lim_xto0fraccos a2cos x - sin afracsinfracx22cosfracx2cos x=fraccos a2times1-0=fraccos a2$$







                share|cite|improve this answer













                share|cite|improve this answer



                share|cite|improve this answer











                answered Jul 31 at 21:07









                user 108128

                18.9k41544




                18.9k41544




















                    up vote
                    5
                    down vote













                    $frac dda sin a = lim_limitsxto 0 frac sin (x+a) - sin ax = cos a\
                    lim_limitsxto 0 frac sin (x+a) - sin asin 2x = lim_limitsxto 0 frac (sin (x+a) - sin a)xxsin 2x = lim_limitsxto 0 (frac sin (x+a) - sin ax)(frac xsin 2x) = frac 12 cos a $






                    share|cite|improve this answer

















                    • 2




                      First thing I thought of as well. I love approaches that use the definition of a derivative.
                      – Sorfosh
                      Jul 31 at 21:08














                    up vote
                    5
                    down vote













                    $frac dda sin a = lim_limitsxto 0 frac sin (x+a) - sin ax = cos a\
                    lim_limitsxto 0 frac sin (x+a) - sin asin 2x = lim_limitsxto 0 frac (sin (x+a) - sin a)xxsin 2x = lim_limitsxto 0 (frac sin (x+a) - sin ax)(frac xsin 2x) = frac 12 cos a $






                    share|cite|improve this answer

















                    • 2




                      First thing I thought of as well. I love approaches that use the definition of a derivative.
                      – Sorfosh
                      Jul 31 at 21:08












                    up vote
                    5
                    down vote










                    up vote
                    5
                    down vote









                    $frac dda sin a = lim_limitsxto 0 frac sin (x+a) - sin ax = cos a\
                    lim_limitsxto 0 frac sin (x+a) - sin asin 2x = lim_limitsxto 0 frac (sin (x+a) - sin a)xxsin 2x = lim_limitsxto 0 (frac sin (x+a) - sin ax)(frac xsin 2x) = frac 12 cos a $






                    share|cite|improve this answer













                    $frac dda sin a = lim_limitsxto 0 frac sin (x+a) - sin ax = cos a\
                    lim_limitsxto 0 frac sin (x+a) - sin asin 2x = lim_limitsxto 0 frac (sin (x+a) - sin a)xxsin 2x = lim_limitsxto 0 (frac sin (x+a) - sin ax)(frac xsin 2x) = frac 12 cos a $







                    share|cite|improve this answer













                    share|cite|improve this answer



                    share|cite|improve this answer











                    answered Jul 31 at 21:07









                    Doug M

                    39k31749




                    39k31749







                    • 2




                      First thing I thought of as well. I love approaches that use the definition of a derivative.
                      – Sorfosh
                      Jul 31 at 21:08












                    • 2




                      First thing I thought of as well. I love approaches that use the definition of a derivative.
                      – Sorfosh
                      Jul 31 at 21:08







                    2




                    2




                    First thing I thought of as well. I love approaches that use the definition of a derivative.
                    – Sorfosh
                    Jul 31 at 21:08




                    First thing I thought of as well. I love approaches that use the definition of a derivative.
                    – Sorfosh
                    Jul 31 at 21:08










                    up vote
                    2
                    down vote













                    Hint: use that $$sin(x)-sin(y)=2cosleft(fracx+y2right)sinleft(fracx-y2right)$$






                    share|cite|improve this answer





















                    • mathworld.wolfram.com/ProsthaphaeresisFormulas.html
                      – lab bhattacharjee
                      Aug 1 at 0:11














                    up vote
                    2
                    down vote













                    Hint: use that $$sin(x)-sin(y)=2cosleft(fracx+y2right)sinleft(fracx-y2right)$$






                    share|cite|improve this answer





















                    • mathworld.wolfram.com/ProsthaphaeresisFormulas.html
                      – lab bhattacharjee
                      Aug 1 at 0:11












                    up vote
                    2
                    down vote










                    up vote
                    2
                    down vote









                    Hint: use that $$sin(x)-sin(y)=2cosleft(fracx+y2right)sinleft(fracx-y2right)$$






                    share|cite|improve this answer













                    Hint: use that $$sin(x)-sin(y)=2cosleft(fracx+y2right)sinleft(fracx-y2right)$$







                    share|cite|improve this answer













                    share|cite|improve this answer



                    share|cite|improve this answer











                    answered Jul 31 at 21:01









                    Dr. Sonnhard Graubner

                    66.6k32659




                    66.6k32659











                    • mathworld.wolfram.com/ProsthaphaeresisFormulas.html
                      – lab bhattacharjee
                      Aug 1 at 0:11
















                    • mathworld.wolfram.com/ProsthaphaeresisFormulas.html
                      – lab bhattacharjee
                      Aug 1 at 0:11















                    mathworld.wolfram.com/ProsthaphaeresisFormulas.html
                    – lab bhattacharjee
                    Aug 1 at 0:11




                    mathworld.wolfram.com/ProsthaphaeresisFormulas.html
                    – lab bhattacharjee
                    Aug 1 at 0:11










                    up vote
                    2
                    down vote













                    Hint:



                    Rewrite the quotient as
                    $$fracsin(x+a)-sin ax ,fracxsin 2x=fracsin(x+a)-sin ax ,frac2xsin 2xfrac 12,$$
                    and observe the first fraction is but a rate of variation from the value $a$.






                    share|cite|improve this answer

























                      up vote
                      2
                      down vote













                      Hint:



                      Rewrite the quotient as
                      $$fracsin(x+a)-sin ax ,fracxsin 2x=fracsin(x+a)-sin ax ,frac2xsin 2xfrac 12,$$
                      and observe the first fraction is but a rate of variation from the value $a$.






                      share|cite|improve this answer























                        up vote
                        2
                        down vote










                        up vote
                        2
                        down vote









                        Hint:



                        Rewrite the quotient as
                        $$fracsin(x+a)-sin ax ,fracxsin 2x=fracsin(x+a)-sin ax ,frac2xsin 2xfrac 12,$$
                        and observe the first fraction is but a rate of variation from the value $a$.






                        share|cite|improve this answer













                        Hint:



                        Rewrite the quotient as
                        $$fracsin(x+a)-sin ax ,fracxsin 2x=fracsin(x+a)-sin ax ,frac2xsin 2xfrac 12,$$
                        and observe the first fraction is but a rate of variation from the value $a$.







                        share|cite|improve this answer













                        share|cite|improve this answer



                        share|cite|improve this answer











                        answered Jul 31 at 21:09









                        Bernard

                        110k635102




                        110k635102




















                            up vote
                            2
                            down vote













                            Write the limit in the following fashion namely
                            $$
                            lim_x to 0 fracsin(x+a) - sin(a)sin2x=fraclim_xto 0fracsin(a+x)-sin(a)x2lim_xto 0fracsin 2x2x=fraccos a2
                            $$






                            share|cite|improve this answer

























                              up vote
                              2
                              down vote













                              Write the limit in the following fashion namely
                              $$
                              lim_x to 0 fracsin(x+a) - sin(a)sin2x=fraclim_xto 0fracsin(a+x)-sin(a)x2lim_xto 0fracsin 2x2x=fraccos a2
                              $$






                              share|cite|improve this answer























                                up vote
                                2
                                down vote










                                up vote
                                2
                                down vote









                                Write the limit in the following fashion namely
                                $$
                                lim_x to 0 fracsin(x+a) - sin(a)sin2x=fraclim_xto 0fracsin(a+x)-sin(a)x2lim_xto 0fracsin 2x2x=fraccos a2
                                $$






                                share|cite|improve this answer













                                Write the limit in the following fashion namely
                                $$
                                lim_x to 0 fracsin(x+a) - sin(a)sin2x=fraclim_xto 0fracsin(a+x)-sin(a)x2lim_xto 0fracsin 2x2x=fraccos a2
                                $$







                                share|cite|improve this answer













                                share|cite|improve this answer



                                share|cite|improve this answer











                                answered Jul 31 at 21:09









                                Foobaz John

                                18k41245




                                18k41245




















                                    up vote
                                    1
                                    down vote













                                    You're doing just fine with your approach. Break it into a sum of limits. The first term is easy. For the second, you need to know
                                    $$lim_xto 0fraccos x - 1x = lim_xto 0frac(cos x-1)(cos x + 1)x(cos x+1) = - lim_xto 0fracsin^2 xxcdotfrac 1cos x+1.$$ Can you finish from this?






                                    share|cite|improve this answer

























                                      up vote
                                      1
                                      down vote













                                      You're doing just fine with your approach. Break it into a sum of limits. The first term is easy. For the second, you need to know
                                      $$lim_xto 0fraccos x - 1x = lim_xto 0frac(cos x-1)(cos x + 1)x(cos x+1) = - lim_xto 0fracsin^2 xxcdotfrac 1cos x+1.$$ Can you finish from this?






                                      share|cite|improve this answer























                                        up vote
                                        1
                                        down vote










                                        up vote
                                        1
                                        down vote









                                        You're doing just fine with your approach. Break it into a sum of limits. The first term is easy. For the second, you need to know
                                        $$lim_xto 0fraccos x - 1x = lim_xto 0frac(cos x-1)(cos x + 1)x(cos x+1) = - lim_xto 0fracsin^2 xxcdotfrac 1cos x+1.$$ Can you finish from this?






                                        share|cite|improve this answer













                                        You're doing just fine with your approach. Break it into a sum of limits. The first term is easy. For the second, you need to know
                                        $$lim_xto 0fraccos x - 1x = lim_xto 0frac(cos x-1)(cos x + 1)x(cos x+1) = - lim_xto 0fracsin^2 xxcdotfrac 1cos x+1.$$ Can you finish from this?







                                        share|cite|improve this answer













                                        share|cite|improve this answer



                                        share|cite|improve this answer











                                        answered Jul 31 at 21:05









                                        Ted Shifrin

                                        59.4k44386




                                        59.4k44386




















                                            up vote
                                            1
                                            down vote













                                            Use the sum to product formula



                                            $$sin(x)-sin(y) = 2cdot cosleft(fracx+y2right)sinleft(fracx-y2right)$$



                                            Plugging in $x=x+a$ and $y=a$ leads to



                                            $$beginalign
                                            sin(x+a)-sin(a)~&=~2cdot cosleft(frac(x+a)+a2right)sinleft(frac(x+a)-a2right)\
                                            &=~2cdotcosleft(fracx2+aright)sinleft(fracx2right)
                                            endalign$$



                                            Subsitute this into the limit yields to



                                            $$beginalign
                                            lim_xto 0frac2cdotcosleft(fracx2+aright)sinleft(fracx2right)2cdotsin(x)cos(x)~&=~lim_xto 0fraccosleft(fracx2+aright)sinleft(fracx2right)sin(x)cos(x)\
                                            &=~lim_xto 0fraccosleft(fracx2+aright)cos(x)cdotlim_xto 0fracsinleft(fracx2right)x\
                                            &=~cos(a)~cdotlim_hto 0fracsinleft(hright)2h\
                                            &=~cos(a)~cdotfrac12lim_hto 0fracsinleft(hright)h\
                                            &=~fraccos(a)2
                                            endalign$$



                                            Where in the end $fracx2$ was substituted by $h$.






                                            share|cite|improve this answer



























                                              up vote
                                              1
                                              down vote













                                              Use the sum to product formula



                                              $$sin(x)-sin(y) = 2cdot cosleft(fracx+y2right)sinleft(fracx-y2right)$$



                                              Plugging in $x=x+a$ and $y=a$ leads to



                                              $$beginalign
                                              sin(x+a)-sin(a)~&=~2cdot cosleft(frac(x+a)+a2right)sinleft(frac(x+a)-a2right)\
                                              &=~2cdotcosleft(fracx2+aright)sinleft(fracx2right)
                                              endalign$$



                                              Subsitute this into the limit yields to



                                              $$beginalign
                                              lim_xto 0frac2cdotcosleft(fracx2+aright)sinleft(fracx2right)2cdotsin(x)cos(x)~&=~lim_xto 0fraccosleft(fracx2+aright)sinleft(fracx2right)sin(x)cos(x)\
                                              &=~lim_xto 0fraccosleft(fracx2+aright)cos(x)cdotlim_xto 0fracsinleft(fracx2right)x\
                                              &=~cos(a)~cdotlim_hto 0fracsinleft(hright)2h\
                                              &=~cos(a)~cdotfrac12lim_hto 0fracsinleft(hright)h\
                                              &=~fraccos(a)2
                                              endalign$$



                                              Where in the end $fracx2$ was substituted by $h$.






                                              share|cite|improve this answer

























                                                up vote
                                                1
                                                down vote










                                                up vote
                                                1
                                                down vote









                                                Use the sum to product formula



                                                $$sin(x)-sin(y) = 2cdot cosleft(fracx+y2right)sinleft(fracx-y2right)$$



                                                Plugging in $x=x+a$ and $y=a$ leads to



                                                $$beginalign
                                                sin(x+a)-sin(a)~&=~2cdot cosleft(frac(x+a)+a2right)sinleft(frac(x+a)-a2right)\
                                                &=~2cdotcosleft(fracx2+aright)sinleft(fracx2right)
                                                endalign$$



                                                Subsitute this into the limit yields to



                                                $$beginalign
                                                lim_xto 0frac2cdotcosleft(fracx2+aright)sinleft(fracx2right)2cdotsin(x)cos(x)~&=~lim_xto 0fraccosleft(fracx2+aright)sinleft(fracx2right)sin(x)cos(x)\
                                                &=~lim_xto 0fraccosleft(fracx2+aright)cos(x)cdotlim_xto 0fracsinleft(fracx2right)x\
                                                &=~cos(a)~cdotlim_hto 0fracsinleft(hright)2h\
                                                &=~cos(a)~cdotfrac12lim_hto 0fracsinleft(hright)h\
                                                &=~fraccos(a)2
                                                endalign$$



                                                Where in the end $fracx2$ was substituted by $h$.






                                                share|cite|improve this answer















                                                Use the sum to product formula



                                                $$sin(x)-sin(y) = 2cdot cosleft(fracx+y2right)sinleft(fracx-y2right)$$



                                                Plugging in $x=x+a$ and $y=a$ leads to



                                                $$beginalign
                                                sin(x+a)-sin(a)~&=~2cdot cosleft(frac(x+a)+a2right)sinleft(frac(x+a)-a2right)\
                                                &=~2cdotcosleft(fracx2+aright)sinleft(fracx2right)
                                                endalign$$



                                                Subsitute this into the limit yields to



                                                $$beginalign
                                                lim_xto 0frac2cdotcosleft(fracx2+aright)sinleft(fracx2right)2cdotsin(x)cos(x)~&=~lim_xto 0fraccosleft(fracx2+aright)sinleft(fracx2right)sin(x)cos(x)\
                                                &=~lim_xto 0fraccosleft(fracx2+aright)cos(x)cdotlim_xto 0fracsinleft(fracx2right)x\
                                                &=~cos(a)~cdotlim_hto 0fracsinleft(hright)2h\
                                                &=~cos(a)~cdotfrac12lim_hto 0fracsinleft(hright)h\
                                                &=~fraccos(a)2
                                                endalign$$



                                                Where in the end $fracx2$ was substituted by $h$.







                                                share|cite|improve this answer















                                                share|cite|improve this answer



                                                share|cite|improve this answer








                                                edited Jul 31 at 21:16


























                                                answered Jul 31 at 21:11









                                                mrtaurho

                                                660117




                                                660117






















                                                     

                                                    draft saved


                                                    draft discarded


























                                                     


                                                    draft saved


                                                    draft discarded














                                                    StackExchange.ready(
                                                    function ()
                                                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2868470%2fevaluation-of-lim-x-to-0-frac-sinxa-sina-sin2x%23new-answer', 'question_page');

                                                    );

                                                    Post as a guest













































































                                                    Comments

                                                    Popular posts from this blog

                                                    What is the equation of a 3D cone with generalised tilt?

                                                    Color the edges and diagonals of a regular polygon

                                                    Relationship between determinant of matrix and determinant of adjoint?