Evaluation of $lim_x to 0 fracsin(x+a) -sin(a)sin2x$.
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
I am having trouble proving out the below:
$$lim_x to 0 fracsin(x+a) - sin(a)sin2x$$
I have got as far as below using $sin(a) + sin(b)$ in numerator and $sin(2a)$ in the denominator but am not sure how to expand further, or if these are the right rules to apply.
$$lim_x to 0fracsin(x)cos(a) + sin(a)[cos(x) - 1]2sin(x)cos(x)$$
I need to simplify it down to apply $displaystylelim_x to 0fracsin(x)x$.
calculus limits trigonometry
add a comment |Â
up vote
1
down vote
favorite
I am having trouble proving out the below:
$$lim_x to 0 fracsin(x+a) - sin(a)sin2x$$
I have got as far as below using $sin(a) + sin(b)$ in numerator and $sin(2a)$ in the denominator but am not sure how to expand further, or if these are the right rules to apply.
$$lim_x to 0fracsin(x)cos(a) + sin(a)[cos(x) - 1]2sin(x)cos(x)$$
I need to simplify it down to apply $displaystylelim_x to 0fracsin(x)x$.
calculus limits trigonometry
Maybe try to use $sin(x)-sin(y) = 2cdot cosleft(fracx+y2right)sinleft(fracx-y2right)$
– mrtaurho
Jul 31 at 21:01
Are you allowed to use L'Hopital's rule?
– Mark
Jul 31 at 21:02
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I am having trouble proving out the below:
$$lim_x to 0 fracsin(x+a) - sin(a)sin2x$$
I have got as far as below using $sin(a) + sin(b)$ in numerator and $sin(2a)$ in the denominator but am not sure how to expand further, or if these are the right rules to apply.
$$lim_x to 0fracsin(x)cos(a) + sin(a)[cos(x) - 1]2sin(x)cos(x)$$
I need to simplify it down to apply $displaystylelim_x to 0fracsin(x)x$.
calculus limits trigonometry
I am having trouble proving out the below:
$$lim_x to 0 fracsin(x+a) - sin(a)sin2x$$
I have got as far as below using $sin(a) + sin(b)$ in numerator and $sin(2a)$ in the denominator but am not sure how to expand further, or if these are the right rules to apply.
$$lim_x to 0fracsin(x)cos(a) + sin(a)[cos(x) - 1]2sin(x)cos(x)$$
I need to simplify it down to apply $displaystylelim_x to 0fracsin(x)x$.
calculus limits trigonometry
edited Aug 1 at 2:23
user 108128
18.9k41544
18.9k41544
asked Jul 31 at 20:58
number8
7717
7717
Maybe try to use $sin(x)-sin(y) = 2cdot cosleft(fracx+y2right)sinleft(fracx-y2right)$
– mrtaurho
Jul 31 at 21:01
Are you allowed to use L'Hopital's rule?
– Mark
Jul 31 at 21:02
add a comment |Â
Maybe try to use $sin(x)-sin(y) = 2cdot cosleft(fracx+y2right)sinleft(fracx-y2right)$
– mrtaurho
Jul 31 at 21:01
Are you allowed to use L'Hopital's rule?
– Mark
Jul 31 at 21:02
Maybe try to use $sin(x)-sin(y) = 2cdot cosleft(fracx+y2right)sinleft(fracx-y2right)$
– mrtaurho
Jul 31 at 21:01
Maybe try to use $sin(x)-sin(y) = 2cdot cosleft(fracx+y2right)sinleft(fracx-y2right)$
– mrtaurho
Jul 31 at 21:01
Are you allowed to use L'Hopital's rule?
– Mark
Jul 31 at 21:02
Are you allowed to use L'Hopital's rule?
– Mark
Jul 31 at 21:02
add a comment |Â
7 Answers
7
active
oldest
votes
up vote
1
down vote
accepted
Continue with this:
$$fracsin x cos a2sin xcos x + fracsin a[cos x - 1]2sin xcos x$$
$$fraccos a2cos x - sin afrac2sin^2fracx24sinfracx2cosfracx2cos x$$
$$fraccos a2cos x - sin afracsinfracx22cosfracx2cos x$$
then
$$lim_xto0fraccos a2cos x - sin afracsinfracx22cosfracx2cos x=fraccos a2times1-0=fraccos a2$$
add a comment |Â
up vote
5
down vote
$frac dda sin a = lim_limitsxto 0 frac sin (x+a) - sin ax = cos a\
lim_limitsxto 0 frac sin (x+a) - sin asin 2x = lim_limitsxto 0 frac (sin (x+a) - sin a)xxsin 2x = lim_limitsxto 0 (frac sin (x+a) - sin ax)(frac xsin 2x) = frac 12 cos a $
2
First thing I thought of as well. I love approaches that use the definition of a derivative.
– Sorfosh
Jul 31 at 21:08
add a comment |Â
up vote
2
down vote
Hint: use that $$sin(x)-sin(y)=2cosleft(fracx+y2right)sinleft(fracx-y2right)$$
mathworld.wolfram.com/ProsthaphaeresisFormulas.html
– lab bhattacharjee
Aug 1 at 0:11
add a comment |Â
up vote
2
down vote
Hint:
Rewrite the quotient as
$$fracsin(x+a)-sin ax ,fracxsin 2x=fracsin(x+a)-sin ax ,frac2xsin 2xfrac 12,$$
and observe the first fraction is but a rate of variation from the value $a$.
add a comment |Â
up vote
2
down vote
Write the limit in the following fashion namely
$$
lim_x to 0 fracsin(x+a) - sin(a)sin2x=fraclim_xto 0fracsin(a+x)-sin(a)x2lim_xto 0fracsin 2x2x=fraccos a2
$$
add a comment |Â
up vote
1
down vote
You're doing just fine with your approach. Break it into a sum of limits. The first term is easy. For the second, you need to know
$$lim_xto 0fraccos x - 1x = lim_xto 0frac(cos x-1)(cos x + 1)x(cos x+1) = - lim_xto 0fracsin^2 xxcdotfrac 1cos x+1.$$ Can you finish from this?
add a comment |Â
up vote
1
down vote
Use the sum to product formula
$$sin(x)-sin(y) = 2cdot cosleft(fracx+y2right)sinleft(fracx-y2right)$$
Plugging in $x=x+a$ and $y=a$ leads to
$$beginalign
sin(x+a)-sin(a)~&=~2cdot cosleft(frac(x+a)+a2right)sinleft(frac(x+a)-a2right)\
&=~2cdotcosleft(fracx2+aright)sinleft(fracx2right)
endalign$$
Subsitute this into the limit yields to
$$beginalign
lim_xto 0frac2cdotcosleft(fracx2+aright)sinleft(fracx2right)2cdotsin(x)cos(x)~&=~lim_xto 0fraccosleft(fracx2+aright)sinleft(fracx2right)sin(x)cos(x)\
&=~lim_xto 0fraccosleft(fracx2+aright)cos(x)cdotlim_xto 0fracsinleft(fracx2right)x\
&=~cos(a)~cdotlim_hto 0fracsinleft(hright)2h\
&=~cos(a)~cdotfrac12lim_hto 0fracsinleft(hright)h\
&=~fraccos(a)2
endalign$$
Where in the end $fracx2$ was substituted by $h$.
add a comment |Â
7 Answers
7
active
oldest
votes
7 Answers
7
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Continue with this:
$$fracsin x cos a2sin xcos x + fracsin a[cos x - 1]2sin xcos x$$
$$fraccos a2cos x - sin afrac2sin^2fracx24sinfracx2cosfracx2cos x$$
$$fraccos a2cos x - sin afracsinfracx22cosfracx2cos x$$
then
$$lim_xto0fraccos a2cos x - sin afracsinfracx22cosfracx2cos x=fraccos a2times1-0=fraccos a2$$
add a comment |Â
up vote
1
down vote
accepted
Continue with this:
$$fracsin x cos a2sin xcos x + fracsin a[cos x - 1]2sin xcos x$$
$$fraccos a2cos x - sin afrac2sin^2fracx24sinfracx2cosfracx2cos x$$
$$fraccos a2cos x - sin afracsinfracx22cosfracx2cos x$$
then
$$lim_xto0fraccos a2cos x - sin afracsinfracx22cosfracx2cos x=fraccos a2times1-0=fraccos a2$$
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Continue with this:
$$fracsin x cos a2sin xcos x + fracsin a[cos x - 1]2sin xcos x$$
$$fraccos a2cos x - sin afrac2sin^2fracx24sinfracx2cosfracx2cos x$$
$$fraccos a2cos x - sin afracsinfracx22cosfracx2cos x$$
then
$$lim_xto0fraccos a2cos x - sin afracsinfracx22cosfracx2cos x=fraccos a2times1-0=fraccos a2$$
Continue with this:
$$fracsin x cos a2sin xcos x + fracsin a[cos x - 1]2sin xcos x$$
$$fraccos a2cos x - sin afrac2sin^2fracx24sinfracx2cosfracx2cos x$$
$$fraccos a2cos x - sin afracsinfracx22cosfracx2cos x$$
then
$$lim_xto0fraccos a2cos x - sin afracsinfracx22cosfracx2cos x=fraccos a2times1-0=fraccos a2$$
answered Jul 31 at 21:07
user 108128
18.9k41544
18.9k41544
add a comment |Â
add a comment |Â
up vote
5
down vote
$frac dda sin a = lim_limitsxto 0 frac sin (x+a) - sin ax = cos a\
lim_limitsxto 0 frac sin (x+a) - sin asin 2x = lim_limitsxto 0 frac (sin (x+a) - sin a)xxsin 2x = lim_limitsxto 0 (frac sin (x+a) - sin ax)(frac xsin 2x) = frac 12 cos a $
2
First thing I thought of as well. I love approaches that use the definition of a derivative.
– Sorfosh
Jul 31 at 21:08
add a comment |Â
up vote
5
down vote
$frac dda sin a = lim_limitsxto 0 frac sin (x+a) - sin ax = cos a\
lim_limitsxto 0 frac sin (x+a) - sin asin 2x = lim_limitsxto 0 frac (sin (x+a) - sin a)xxsin 2x = lim_limitsxto 0 (frac sin (x+a) - sin ax)(frac xsin 2x) = frac 12 cos a $
2
First thing I thought of as well. I love approaches that use the definition of a derivative.
– Sorfosh
Jul 31 at 21:08
add a comment |Â
up vote
5
down vote
up vote
5
down vote
$frac dda sin a = lim_limitsxto 0 frac sin (x+a) - sin ax = cos a\
lim_limitsxto 0 frac sin (x+a) - sin asin 2x = lim_limitsxto 0 frac (sin (x+a) - sin a)xxsin 2x = lim_limitsxto 0 (frac sin (x+a) - sin ax)(frac xsin 2x) = frac 12 cos a $
$frac dda sin a = lim_limitsxto 0 frac sin (x+a) - sin ax = cos a\
lim_limitsxto 0 frac sin (x+a) - sin asin 2x = lim_limitsxto 0 frac (sin (x+a) - sin a)xxsin 2x = lim_limitsxto 0 (frac sin (x+a) - sin ax)(frac xsin 2x) = frac 12 cos a $
answered Jul 31 at 21:07
Doug M
39k31749
39k31749
2
First thing I thought of as well. I love approaches that use the definition of a derivative.
– Sorfosh
Jul 31 at 21:08
add a comment |Â
2
First thing I thought of as well. I love approaches that use the definition of a derivative.
– Sorfosh
Jul 31 at 21:08
2
2
First thing I thought of as well. I love approaches that use the definition of a derivative.
– Sorfosh
Jul 31 at 21:08
First thing I thought of as well. I love approaches that use the definition of a derivative.
– Sorfosh
Jul 31 at 21:08
add a comment |Â
up vote
2
down vote
Hint: use that $$sin(x)-sin(y)=2cosleft(fracx+y2right)sinleft(fracx-y2right)$$
mathworld.wolfram.com/ProsthaphaeresisFormulas.html
– lab bhattacharjee
Aug 1 at 0:11
add a comment |Â
up vote
2
down vote
Hint: use that $$sin(x)-sin(y)=2cosleft(fracx+y2right)sinleft(fracx-y2right)$$
mathworld.wolfram.com/ProsthaphaeresisFormulas.html
– lab bhattacharjee
Aug 1 at 0:11
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Hint: use that $$sin(x)-sin(y)=2cosleft(fracx+y2right)sinleft(fracx-y2right)$$
Hint: use that $$sin(x)-sin(y)=2cosleft(fracx+y2right)sinleft(fracx-y2right)$$
answered Jul 31 at 21:01


Dr. Sonnhard Graubner
66.6k32659
66.6k32659
mathworld.wolfram.com/ProsthaphaeresisFormulas.html
– lab bhattacharjee
Aug 1 at 0:11
add a comment |Â
mathworld.wolfram.com/ProsthaphaeresisFormulas.html
– lab bhattacharjee
Aug 1 at 0:11
mathworld.wolfram.com/ProsthaphaeresisFormulas.html
– lab bhattacharjee
Aug 1 at 0:11
mathworld.wolfram.com/ProsthaphaeresisFormulas.html
– lab bhattacharjee
Aug 1 at 0:11
add a comment |Â
up vote
2
down vote
Hint:
Rewrite the quotient as
$$fracsin(x+a)-sin ax ,fracxsin 2x=fracsin(x+a)-sin ax ,frac2xsin 2xfrac 12,$$
and observe the first fraction is but a rate of variation from the value $a$.
add a comment |Â
up vote
2
down vote
Hint:
Rewrite the quotient as
$$fracsin(x+a)-sin ax ,fracxsin 2x=fracsin(x+a)-sin ax ,frac2xsin 2xfrac 12,$$
and observe the first fraction is but a rate of variation from the value $a$.
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Hint:
Rewrite the quotient as
$$fracsin(x+a)-sin ax ,fracxsin 2x=fracsin(x+a)-sin ax ,frac2xsin 2xfrac 12,$$
and observe the first fraction is but a rate of variation from the value $a$.
Hint:
Rewrite the quotient as
$$fracsin(x+a)-sin ax ,fracxsin 2x=fracsin(x+a)-sin ax ,frac2xsin 2xfrac 12,$$
and observe the first fraction is but a rate of variation from the value $a$.
answered Jul 31 at 21:09
Bernard
110k635102
110k635102
add a comment |Â
add a comment |Â
up vote
2
down vote
Write the limit in the following fashion namely
$$
lim_x to 0 fracsin(x+a) - sin(a)sin2x=fraclim_xto 0fracsin(a+x)-sin(a)x2lim_xto 0fracsin 2x2x=fraccos a2
$$
add a comment |Â
up vote
2
down vote
Write the limit in the following fashion namely
$$
lim_x to 0 fracsin(x+a) - sin(a)sin2x=fraclim_xto 0fracsin(a+x)-sin(a)x2lim_xto 0fracsin 2x2x=fraccos a2
$$
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Write the limit in the following fashion namely
$$
lim_x to 0 fracsin(x+a) - sin(a)sin2x=fraclim_xto 0fracsin(a+x)-sin(a)x2lim_xto 0fracsin 2x2x=fraccos a2
$$
Write the limit in the following fashion namely
$$
lim_x to 0 fracsin(x+a) - sin(a)sin2x=fraclim_xto 0fracsin(a+x)-sin(a)x2lim_xto 0fracsin 2x2x=fraccos a2
$$
answered Jul 31 at 21:09


Foobaz John
18k41245
18k41245
add a comment |Â
add a comment |Â
up vote
1
down vote
You're doing just fine with your approach. Break it into a sum of limits. The first term is easy. For the second, you need to know
$$lim_xto 0fraccos x - 1x = lim_xto 0frac(cos x-1)(cos x + 1)x(cos x+1) = - lim_xto 0fracsin^2 xxcdotfrac 1cos x+1.$$ Can you finish from this?
add a comment |Â
up vote
1
down vote
You're doing just fine with your approach. Break it into a sum of limits. The first term is easy. For the second, you need to know
$$lim_xto 0fraccos x - 1x = lim_xto 0frac(cos x-1)(cos x + 1)x(cos x+1) = - lim_xto 0fracsin^2 xxcdotfrac 1cos x+1.$$ Can you finish from this?
add a comment |Â
up vote
1
down vote
up vote
1
down vote
You're doing just fine with your approach. Break it into a sum of limits. The first term is easy. For the second, you need to know
$$lim_xto 0fraccos x - 1x = lim_xto 0frac(cos x-1)(cos x + 1)x(cos x+1) = - lim_xto 0fracsin^2 xxcdotfrac 1cos x+1.$$ Can you finish from this?
You're doing just fine with your approach. Break it into a sum of limits. The first term is easy. For the second, you need to know
$$lim_xto 0fraccos x - 1x = lim_xto 0frac(cos x-1)(cos x + 1)x(cos x+1) = - lim_xto 0fracsin^2 xxcdotfrac 1cos x+1.$$ Can you finish from this?
answered Jul 31 at 21:05


Ted Shifrin
59.4k44386
59.4k44386
add a comment |Â
add a comment |Â
up vote
1
down vote
Use the sum to product formula
$$sin(x)-sin(y) = 2cdot cosleft(fracx+y2right)sinleft(fracx-y2right)$$
Plugging in $x=x+a$ and $y=a$ leads to
$$beginalign
sin(x+a)-sin(a)~&=~2cdot cosleft(frac(x+a)+a2right)sinleft(frac(x+a)-a2right)\
&=~2cdotcosleft(fracx2+aright)sinleft(fracx2right)
endalign$$
Subsitute this into the limit yields to
$$beginalign
lim_xto 0frac2cdotcosleft(fracx2+aright)sinleft(fracx2right)2cdotsin(x)cos(x)~&=~lim_xto 0fraccosleft(fracx2+aright)sinleft(fracx2right)sin(x)cos(x)\
&=~lim_xto 0fraccosleft(fracx2+aright)cos(x)cdotlim_xto 0fracsinleft(fracx2right)x\
&=~cos(a)~cdotlim_hto 0fracsinleft(hright)2h\
&=~cos(a)~cdotfrac12lim_hto 0fracsinleft(hright)h\
&=~fraccos(a)2
endalign$$
Where in the end $fracx2$ was substituted by $h$.
add a comment |Â
up vote
1
down vote
Use the sum to product formula
$$sin(x)-sin(y) = 2cdot cosleft(fracx+y2right)sinleft(fracx-y2right)$$
Plugging in $x=x+a$ and $y=a$ leads to
$$beginalign
sin(x+a)-sin(a)~&=~2cdot cosleft(frac(x+a)+a2right)sinleft(frac(x+a)-a2right)\
&=~2cdotcosleft(fracx2+aright)sinleft(fracx2right)
endalign$$
Subsitute this into the limit yields to
$$beginalign
lim_xto 0frac2cdotcosleft(fracx2+aright)sinleft(fracx2right)2cdotsin(x)cos(x)~&=~lim_xto 0fraccosleft(fracx2+aright)sinleft(fracx2right)sin(x)cos(x)\
&=~lim_xto 0fraccosleft(fracx2+aright)cos(x)cdotlim_xto 0fracsinleft(fracx2right)x\
&=~cos(a)~cdotlim_hto 0fracsinleft(hright)2h\
&=~cos(a)~cdotfrac12lim_hto 0fracsinleft(hright)h\
&=~fraccos(a)2
endalign$$
Where in the end $fracx2$ was substituted by $h$.
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Use the sum to product formula
$$sin(x)-sin(y) = 2cdot cosleft(fracx+y2right)sinleft(fracx-y2right)$$
Plugging in $x=x+a$ and $y=a$ leads to
$$beginalign
sin(x+a)-sin(a)~&=~2cdot cosleft(frac(x+a)+a2right)sinleft(frac(x+a)-a2right)\
&=~2cdotcosleft(fracx2+aright)sinleft(fracx2right)
endalign$$
Subsitute this into the limit yields to
$$beginalign
lim_xto 0frac2cdotcosleft(fracx2+aright)sinleft(fracx2right)2cdotsin(x)cos(x)~&=~lim_xto 0fraccosleft(fracx2+aright)sinleft(fracx2right)sin(x)cos(x)\
&=~lim_xto 0fraccosleft(fracx2+aright)cos(x)cdotlim_xto 0fracsinleft(fracx2right)x\
&=~cos(a)~cdotlim_hto 0fracsinleft(hright)2h\
&=~cos(a)~cdotfrac12lim_hto 0fracsinleft(hright)h\
&=~fraccos(a)2
endalign$$
Where in the end $fracx2$ was substituted by $h$.
Use the sum to product formula
$$sin(x)-sin(y) = 2cdot cosleft(fracx+y2right)sinleft(fracx-y2right)$$
Plugging in $x=x+a$ and $y=a$ leads to
$$beginalign
sin(x+a)-sin(a)~&=~2cdot cosleft(frac(x+a)+a2right)sinleft(frac(x+a)-a2right)\
&=~2cdotcosleft(fracx2+aright)sinleft(fracx2right)
endalign$$
Subsitute this into the limit yields to
$$beginalign
lim_xto 0frac2cdotcosleft(fracx2+aright)sinleft(fracx2right)2cdotsin(x)cos(x)~&=~lim_xto 0fraccosleft(fracx2+aright)sinleft(fracx2right)sin(x)cos(x)\
&=~lim_xto 0fraccosleft(fracx2+aright)cos(x)cdotlim_xto 0fracsinleft(fracx2right)x\
&=~cos(a)~cdotlim_hto 0fracsinleft(hright)2h\
&=~cos(a)~cdotfrac12lim_hto 0fracsinleft(hright)h\
&=~fraccos(a)2
endalign$$
Where in the end $fracx2$ was substituted by $h$.
edited Jul 31 at 21:16
answered Jul 31 at 21:11
mrtaurho
660117
660117
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2868470%2fevaluation-of-lim-x-to-0-frac-sinxa-sina-sin2x%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Maybe try to use $sin(x)-sin(y) = 2cdot cosleft(fracx+y2right)sinleft(fracx-y2right)$
– mrtaurho
Jul 31 at 21:01
Are you allowed to use L'Hopital's rule?
– Mark
Jul 31 at 21:02