Finding a Joint Moment Generating Function

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












Please consider the following problem and my solution to it:

Problem:

Let $(X,Y)$ be a continues bivariate r.v. with joint pdf
begineqnarray*
f_XY(x,y) &=& begincases
e^-(x+y) & x > 0 , y > 0 \
0 & textotherwise \
endcases \
endeqnarray*
Find the joint moment generating function of $X$ and $Y$.

Answer:

begineqnarray*
M_XY &=& E(e^t_1 X + e^t_2 Y) \
M_XY &=&
int_0^infty int_0^infty (e^t_1 x + e^t_2 y)(e^-(x+y)) , dy , dx \
M_XY &=&
int_0^infty int_0^infty
e^t_1x - x - y + e^t_2y - x - y , dy , dx \
M_XY &=&
int_0^infty
-e^t_1x - x - y - frac e^t_2y -x - y t_2-1 Big|_y = 0^y = infty , dx \
M_XY &=& int_0^infty
( -0 + 0) - ( -e^t_1x - x - frace^ -x t_2-1 ) , dx \
M_XY &=& int_0^infty e^(t_1-1)x + frac e^-xt_2-1 , dx \
M_XY &=&
frace^(t_1-1)xt_1-1 - frac e^ -x t_2-1
Big|_x = 0^x = infty \
M_XY &=& ( 0 + 0 ) - ( frac1t_1 - 1 - frac1t_2 - 1) \
M_XY &=& frac1t_2 - 1 - frac1t_1 - 1 \
M_XY &=& frac t_1 - 1 - ( t_2 - 1 ) (t_1 - 1)(t_2 - 1) \
M_XY &=& frac t_1 - t_2 (t_1 - 1)(t_2 - 1) \
endeqnarray*
However, the book gets:
begineqnarray*
M_XY &=& frac1 (1 - t_1)(1 - t_2) \
endeqnarray*
Please note that my answer could be rewritten as:
begineqnarray*
M_XY &=& fract_1-t_2 (1 - t_1)(1 - t_2) \
endeqnarray*
What did I do wrong?

Thanks,

Bob







share|cite|improve this question

















  • 1




    As $X$ and $Y$ are independent Exponential$(1)$ variables, the joint MGF is the product of the individual MGFs.
    – StubbornAtom
    Aug 2 at 15:50














up vote
1
down vote

favorite












Please consider the following problem and my solution to it:

Problem:

Let $(X,Y)$ be a continues bivariate r.v. with joint pdf
begineqnarray*
f_XY(x,y) &=& begincases
e^-(x+y) & x > 0 , y > 0 \
0 & textotherwise \
endcases \
endeqnarray*
Find the joint moment generating function of $X$ and $Y$.

Answer:

begineqnarray*
M_XY &=& E(e^t_1 X + e^t_2 Y) \
M_XY &=&
int_0^infty int_0^infty (e^t_1 x + e^t_2 y)(e^-(x+y)) , dy , dx \
M_XY &=&
int_0^infty int_0^infty
e^t_1x - x - y + e^t_2y - x - y , dy , dx \
M_XY &=&
int_0^infty
-e^t_1x - x - y - frac e^t_2y -x - y t_2-1 Big|_y = 0^y = infty , dx \
M_XY &=& int_0^infty
( -0 + 0) - ( -e^t_1x - x - frace^ -x t_2-1 ) , dx \
M_XY &=& int_0^infty e^(t_1-1)x + frac e^-xt_2-1 , dx \
M_XY &=&
frace^(t_1-1)xt_1-1 - frac e^ -x t_2-1
Big|_x = 0^x = infty \
M_XY &=& ( 0 + 0 ) - ( frac1t_1 - 1 - frac1t_2 - 1) \
M_XY &=& frac1t_2 - 1 - frac1t_1 - 1 \
M_XY &=& frac t_1 - 1 - ( t_2 - 1 ) (t_1 - 1)(t_2 - 1) \
M_XY &=& frac t_1 - t_2 (t_1 - 1)(t_2 - 1) \
endeqnarray*
However, the book gets:
begineqnarray*
M_XY &=& frac1 (1 - t_1)(1 - t_2) \
endeqnarray*
Please note that my answer could be rewritten as:
begineqnarray*
M_XY &=& fract_1-t_2 (1 - t_1)(1 - t_2) \
endeqnarray*
What did I do wrong?

Thanks,

Bob







share|cite|improve this question

















  • 1




    As $X$ and $Y$ are independent Exponential$(1)$ variables, the joint MGF is the product of the individual MGFs.
    – StubbornAtom
    Aug 2 at 15:50












up vote
1
down vote

favorite









up vote
1
down vote

favorite











Please consider the following problem and my solution to it:

Problem:

Let $(X,Y)$ be a continues bivariate r.v. with joint pdf
begineqnarray*
f_XY(x,y) &=& begincases
e^-(x+y) & x > 0 , y > 0 \
0 & textotherwise \
endcases \
endeqnarray*
Find the joint moment generating function of $X$ and $Y$.

Answer:

begineqnarray*
M_XY &=& E(e^t_1 X + e^t_2 Y) \
M_XY &=&
int_0^infty int_0^infty (e^t_1 x + e^t_2 y)(e^-(x+y)) , dy , dx \
M_XY &=&
int_0^infty int_0^infty
e^t_1x - x - y + e^t_2y - x - y , dy , dx \
M_XY &=&
int_0^infty
-e^t_1x - x - y - frac e^t_2y -x - y t_2-1 Big|_y = 0^y = infty , dx \
M_XY &=& int_0^infty
( -0 + 0) - ( -e^t_1x - x - frace^ -x t_2-1 ) , dx \
M_XY &=& int_0^infty e^(t_1-1)x + frac e^-xt_2-1 , dx \
M_XY &=&
frace^(t_1-1)xt_1-1 - frac e^ -x t_2-1
Big|_x = 0^x = infty \
M_XY &=& ( 0 + 0 ) - ( frac1t_1 - 1 - frac1t_2 - 1) \
M_XY &=& frac1t_2 - 1 - frac1t_1 - 1 \
M_XY &=& frac t_1 - 1 - ( t_2 - 1 ) (t_1 - 1)(t_2 - 1) \
M_XY &=& frac t_1 - t_2 (t_1 - 1)(t_2 - 1) \
endeqnarray*
However, the book gets:
begineqnarray*
M_XY &=& frac1 (1 - t_1)(1 - t_2) \
endeqnarray*
Please note that my answer could be rewritten as:
begineqnarray*
M_XY &=& fract_1-t_2 (1 - t_1)(1 - t_2) \
endeqnarray*
What did I do wrong?

Thanks,

Bob







share|cite|improve this question













Please consider the following problem and my solution to it:

Problem:

Let $(X,Y)$ be a continues bivariate r.v. with joint pdf
begineqnarray*
f_XY(x,y) &=& begincases
e^-(x+y) & x > 0 , y > 0 \
0 & textotherwise \
endcases \
endeqnarray*
Find the joint moment generating function of $X$ and $Y$.

Answer:

begineqnarray*
M_XY &=& E(e^t_1 X + e^t_2 Y) \
M_XY &=&
int_0^infty int_0^infty (e^t_1 x + e^t_2 y)(e^-(x+y)) , dy , dx \
M_XY &=&
int_0^infty int_0^infty
e^t_1x - x - y + e^t_2y - x - y , dy , dx \
M_XY &=&
int_0^infty
-e^t_1x - x - y - frac e^t_2y -x - y t_2-1 Big|_y = 0^y = infty , dx \
M_XY &=& int_0^infty
( -0 + 0) - ( -e^t_1x - x - frace^ -x t_2-1 ) , dx \
M_XY &=& int_0^infty e^(t_1-1)x + frac e^-xt_2-1 , dx \
M_XY &=&
frace^(t_1-1)xt_1-1 - frac e^ -x t_2-1
Big|_x = 0^x = infty \
M_XY &=& ( 0 + 0 ) - ( frac1t_1 - 1 - frac1t_2 - 1) \
M_XY &=& frac1t_2 - 1 - frac1t_1 - 1 \
M_XY &=& frac t_1 - 1 - ( t_2 - 1 ) (t_1 - 1)(t_2 - 1) \
M_XY &=& frac t_1 - t_2 (t_1 - 1)(t_2 - 1) \
endeqnarray*
However, the book gets:
begineqnarray*
M_XY &=& frac1 (1 - t_1)(1 - t_2) \
endeqnarray*
Please note that my answer could be rewritten as:
begineqnarray*
M_XY &=& fract_1-t_2 (1 - t_1)(1 - t_2) \
endeqnarray*
What did I do wrong?

Thanks,

Bob









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Aug 1 at 22:27









Clement C.

46.9k33682




46.9k33682









asked Aug 1 at 22:06









Bob

720411




720411







  • 1




    As $X$ and $Y$ are independent Exponential$(1)$ variables, the joint MGF is the product of the individual MGFs.
    – StubbornAtom
    Aug 2 at 15:50












  • 1




    As $X$ and $Y$ are independent Exponential$(1)$ variables, the joint MGF is the product of the individual MGFs.
    – StubbornAtom
    Aug 2 at 15:50







1




1




As $X$ and $Y$ are independent Exponential$(1)$ variables, the joint MGF is the product of the individual MGFs.
– StubbornAtom
Aug 2 at 15:50




As $X$ and $Y$ are independent Exponential$(1)$ variables, the joint MGF is the product of the individual MGFs.
– StubbornAtom
Aug 2 at 15:50










2 Answers
2






active

oldest

votes

















up vote
2
down vote



accepted










What is wrong is your expression for the MGF. It should be
$$
M_XY(t_1,t_2) = mathbbE[e^biglangle beginpmatrix t_1\t_2endpmatrix,beginpmatrix X\Yendpmatrix bigrangle]
= mathbbE[e^t_1X+t_2Y] tag$dagger$
$$
not $mathbbE[e^t_1X+e^t_2Y]$ (which, by linearity, would always be equal to $mathbbE[e^t_1X]+mathbbE[e^t_2Y]$—this should strike you as strange).



Using the expression from $(dagger)$, you 'll get, for $t_1,t_2<1$,
$$beginalign
M_XY(t_1,t_2) &= int_0^infty int_0^infty dxdy e^t_1x+t_2ye^-(x+y)
= int_0^infty int_0^infty dxdy e^(t_1-1)xe^(t_2-1)y\
&= int_0^infty dx e^(t_1-1)x int_0^infty dye^(t_2-1)y
= frac11-t_1 cdot frac11-t_2
endalign$$
as expected.






share|cite|improve this answer






























    up vote
    0
    down vote













    You seek $$beginalignmathsf M_X,Y(s,t) &= mathsf E(mathrm e^sX+tY) \ &= mathsf E(mathrm e^sX~mathrm e^tY)\ &=mathsf E(mathrm e^sX)~mathsf E(mathrm e^tY) & star\ & =mathsf M_X(s)~mathsf M_Y(t)endalign$$



    $star~$ Since $f_X,Y(x,y)=mathrm e^-xmathrm e^-y mathbf 1_xgeq 0mathbf 1_ygeq 0$ indicates that the random variables are independent, and infact something.   Show this to be so, and thus use the MGF for that distribution to find the joint MGF.






    share|cite|improve this answer



















    • 2




      Habit from writing exponential pdf.
      – Graham Kemp
      Aug 2 at 23:11










    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2869555%2ffinding-a-joint-moment-generating-function%23new-answer', 'question_page');

    );

    Post as a guest






























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    2
    down vote



    accepted










    What is wrong is your expression for the MGF. It should be
    $$
    M_XY(t_1,t_2) = mathbbE[e^biglangle beginpmatrix t_1\t_2endpmatrix,beginpmatrix X\Yendpmatrix bigrangle]
    = mathbbE[e^t_1X+t_2Y] tag$dagger$
    $$
    not $mathbbE[e^t_1X+e^t_2Y]$ (which, by linearity, would always be equal to $mathbbE[e^t_1X]+mathbbE[e^t_2Y]$—this should strike you as strange).



    Using the expression from $(dagger)$, you 'll get, for $t_1,t_2<1$,
    $$beginalign
    M_XY(t_1,t_2) &= int_0^infty int_0^infty dxdy e^t_1x+t_2ye^-(x+y)
    = int_0^infty int_0^infty dxdy e^(t_1-1)xe^(t_2-1)y\
    &= int_0^infty dx e^(t_1-1)x int_0^infty dye^(t_2-1)y
    = frac11-t_1 cdot frac11-t_2
    endalign$$
    as expected.






    share|cite|improve this answer



























      up vote
      2
      down vote



      accepted










      What is wrong is your expression for the MGF. It should be
      $$
      M_XY(t_1,t_2) = mathbbE[e^biglangle beginpmatrix t_1\t_2endpmatrix,beginpmatrix X\Yendpmatrix bigrangle]
      = mathbbE[e^t_1X+t_2Y] tag$dagger$
      $$
      not $mathbbE[e^t_1X+e^t_2Y]$ (which, by linearity, would always be equal to $mathbbE[e^t_1X]+mathbbE[e^t_2Y]$—this should strike you as strange).



      Using the expression from $(dagger)$, you 'll get, for $t_1,t_2<1$,
      $$beginalign
      M_XY(t_1,t_2) &= int_0^infty int_0^infty dxdy e^t_1x+t_2ye^-(x+y)
      = int_0^infty int_0^infty dxdy e^(t_1-1)xe^(t_2-1)y\
      &= int_0^infty dx e^(t_1-1)x int_0^infty dye^(t_2-1)y
      = frac11-t_1 cdot frac11-t_2
      endalign$$
      as expected.






      share|cite|improve this answer

























        up vote
        2
        down vote



        accepted







        up vote
        2
        down vote



        accepted






        What is wrong is your expression for the MGF. It should be
        $$
        M_XY(t_1,t_2) = mathbbE[e^biglangle beginpmatrix t_1\t_2endpmatrix,beginpmatrix X\Yendpmatrix bigrangle]
        = mathbbE[e^t_1X+t_2Y] tag$dagger$
        $$
        not $mathbbE[e^t_1X+e^t_2Y]$ (which, by linearity, would always be equal to $mathbbE[e^t_1X]+mathbbE[e^t_2Y]$—this should strike you as strange).



        Using the expression from $(dagger)$, you 'll get, for $t_1,t_2<1$,
        $$beginalign
        M_XY(t_1,t_2) &= int_0^infty int_0^infty dxdy e^t_1x+t_2ye^-(x+y)
        = int_0^infty int_0^infty dxdy e^(t_1-1)xe^(t_2-1)y\
        &= int_0^infty dx e^(t_1-1)x int_0^infty dye^(t_2-1)y
        = frac11-t_1 cdot frac11-t_2
        endalign$$
        as expected.






        share|cite|improve this answer















        What is wrong is your expression for the MGF. It should be
        $$
        M_XY(t_1,t_2) = mathbbE[e^biglangle beginpmatrix t_1\t_2endpmatrix,beginpmatrix X\Yendpmatrix bigrangle]
        = mathbbE[e^t_1X+t_2Y] tag$dagger$
        $$
        not $mathbbE[e^t_1X+e^t_2Y]$ (which, by linearity, would always be equal to $mathbbE[e^t_1X]+mathbbE[e^t_2Y]$—this should strike you as strange).



        Using the expression from $(dagger)$, you 'll get, for $t_1,t_2<1$,
        $$beginalign
        M_XY(t_1,t_2) &= int_0^infty int_0^infty dxdy e^t_1x+t_2ye^-(x+y)
        = int_0^infty int_0^infty dxdy e^(t_1-1)xe^(t_2-1)y\
        &= int_0^infty dx e^(t_1-1)x int_0^infty dye^(t_2-1)y
        = frac11-t_1 cdot frac11-t_2
        endalign$$
        as expected.







        share|cite|improve this answer















        share|cite|improve this answer



        share|cite|improve this answer








        edited Aug 1 at 22:26


























        answered Aug 1 at 22:19









        Clement C.

        46.9k33682




        46.9k33682




















            up vote
            0
            down vote













            You seek $$beginalignmathsf M_X,Y(s,t) &= mathsf E(mathrm e^sX+tY) \ &= mathsf E(mathrm e^sX~mathrm e^tY)\ &=mathsf E(mathrm e^sX)~mathsf E(mathrm e^tY) & star\ & =mathsf M_X(s)~mathsf M_Y(t)endalign$$



            $star~$ Since $f_X,Y(x,y)=mathrm e^-xmathrm e^-y mathbf 1_xgeq 0mathbf 1_ygeq 0$ indicates that the random variables are independent, and infact something.   Show this to be so, and thus use the MGF for that distribution to find the joint MGF.






            share|cite|improve this answer



















            • 2




              Habit from writing exponential pdf.
              – Graham Kemp
              Aug 2 at 23:11














            up vote
            0
            down vote













            You seek $$beginalignmathsf M_X,Y(s,t) &= mathsf E(mathrm e^sX+tY) \ &= mathsf E(mathrm e^sX~mathrm e^tY)\ &=mathsf E(mathrm e^sX)~mathsf E(mathrm e^tY) & star\ & =mathsf M_X(s)~mathsf M_Y(t)endalign$$



            $star~$ Since $f_X,Y(x,y)=mathrm e^-xmathrm e^-y mathbf 1_xgeq 0mathbf 1_ygeq 0$ indicates that the random variables are independent, and infact something.   Show this to be so, and thus use the MGF for that distribution to find the joint MGF.






            share|cite|improve this answer



















            • 2




              Habit from writing exponential pdf.
              – Graham Kemp
              Aug 2 at 23:11












            up vote
            0
            down vote










            up vote
            0
            down vote









            You seek $$beginalignmathsf M_X,Y(s,t) &= mathsf E(mathrm e^sX+tY) \ &= mathsf E(mathrm e^sX~mathrm e^tY)\ &=mathsf E(mathrm e^sX)~mathsf E(mathrm e^tY) & star\ & =mathsf M_X(s)~mathsf M_Y(t)endalign$$



            $star~$ Since $f_X,Y(x,y)=mathrm e^-xmathrm e^-y mathbf 1_xgeq 0mathbf 1_ygeq 0$ indicates that the random variables are independent, and infact something.   Show this to be so, and thus use the MGF for that distribution to find the joint MGF.






            share|cite|improve this answer















            You seek $$beginalignmathsf M_X,Y(s,t) &= mathsf E(mathrm e^sX+tY) \ &= mathsf E(mathrm e^sX~mathrm e^tY)\ &=mathsf E(mathrm e^sX)~mathsf E(mathrm e^tY) & star\ & =mathsf M_X(s)~mathsf M_Y(t)endalign$$



            $star~$ Since $f_X,Y(x,y)=mathrm e^-xmathrm e^-y mathbf 1_xgeq 0mathbf 1_ygeq 0$ indicates that the random variables are independent, and infact something.   Show this to be so, and thus use the MGF for that distribution to find the joint MGF.







            share|cite|improve this answer















            share|cite|improve this answer



            share|cite|improve this answer








            edited Aug 2 at 23:10


























            answered Aug 1 at 23:36









            Graham Kemp

            80k43275




            80k43275







            • 2




              Habit from writing exponential pdf.
              – Graham Kemp
              Aug 2 at 23:11












            • 2




              Habit from writing exponential pdf.
              – Graham Kemp
              Aug 2 at 23:11







            2




            2




            Habit from writing exponential pdf.
            – Graham Kemp
            Aug 2 at 23:11




            Habit from writing exponential pdf.
            – Graham Kemp
            Aug 2 at 23:11












             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2869555%2ffinding-a-joint-moment-generating-function%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What is the equation of a 3D cone with generalised tilt?

            Color the edges and diagonals of a regular polygon

            Relationship between determinant of matrix and determinant of adjoint?