Inference in Bayesian network

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Consider the following figure



Now, I need to calculate $P(l^1)$ and $P(l^1 mid i^o)$



$$P(l^1) = P(l^1, g^1) + P(l^1, g^2) + P(l^1, g^3) $$



$$= P(g^1)P(l^1mid g^1) + P(g^2)P(l^1mid g^2) + P(g^3)P(l^1mid g^3) $$



We can calculate remaining (in above) as follows



$$P(g^1) = P(g^1mid i^0 d^0) P(i^0) P(d^0) + P(g^1mid i^0 d^1) P(i^0) P(d^1) + P(g^1mid i^1 d^0) P(i^1) P(d^0) + P(g^1mid i^1 d^1) P(i^1) P(d^1)$$



My doubt is the to calculate $P(l^1 mid i^0)$



I got struck after this



$$P(l^1 mid i^0) = dfracP(l^1, i^0)P(i^0) = dfrac?0.7$$







share|cite|improve this question

























    up vote
    0
    down vote

    favorite












    Consider the following figure



    Now, I need to calculate $P(l^1)$ and $P(l^1 mid i^o)$



    $$P(l^1) = P(l^1, g^1) + P(l^1, g^2) + P(l^1, g^3) $$



    $$= P(g^1)P(l^1mid g^1) + P(g^2)P(l^1mid g^2) + P(g^3)P(l^1mid g^3) $$



    We can calculate remaining (in above) as follows



    $$P(g^1) = P(g^1mid i^0 d^0) P(i^0) P(d^0) + P(g^1mid i^0 d^1) P(i^0) P(d^1) + P(g^1mid i^1 d^0) P(i^1) P(d^0) + P(g^1mid i^1 d^1) P(i^1) P(d^1)$$



    My doubt is the to calculate $P(l^1 mid i^0)$



    I got struck after this



    $$P(l^1 mid i^0) = dfracP(l^1, i^0)P(i^0) = dfrac?0.7$$







    share|cite|improve this question























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Consider the following figure



      Now, I need to calculate $P(l^1)$ and $P(l^1 mid i^o)$



      $$P(l^1) = P(l^1, g^1) + P(l^1, g^2) + P(l^1, g^3) $$



      $$= P(g^1)P(l^1mid g^1) + P(g^2)P(l^1mid g^2) + P(g^3)P(l^1mid g^3) $$



      We can calculate remaining (in above) as follows



      $$P(g^1) = P(g^1mid i^0 d^0) P(i^0) P(d^0) + P(g^1mid i^0 d^1) P(i^0) P(d^1) + P(g^1mid i^1 d^0) P(i^1) P(d^0) + P(g^1mid i^1 d^1) P(i^1) P(d^1)$$



      My doubt is the to calculate $P(l^1 mid i^0)$



      I got struck after this



      $$P(l^1 mid i^0) = dfracP(l^1, i^0)P(i^0) = dfrac?0.7$$







      share|cite|improve this question













      Consider the following figure



      Now, I need to calculate $P(l^1)$ and $P(l^1 mid i^o)$



      $$P(l^1) = P(l^1, g^1) + P(l^1, g^2) + P(l^1, g^3) $$



      $$= P(g^1)P(l^1mid g^1) + P(g^2)P(l^1mid g^2) + P(g^3)P(l^1mid g^3) $$



      We can calculate remaining (in above) as follows



      $$P(g^1) = P(g^1mid i^0 d^0) P(i^0) P(d^0) + P(g^1mid i^0 d^1) P(i^0) P(d^1) + P(g^1mid i^1 d^0) P(i^1) P(d^0) + P(g^1mid i^1 d^1) P(i^1) P(d^1)$$



      My doubt is the to calculate $P(l^1 mid i^0)$



      I got struck after this



      $$P(l^1 mid i^0) = dfracP(l^1, i^0)P(i^0) = dfrac?0.7$$









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Aug 1 at 10:04
























      asked Aug 1 at 9:46









      hanugm

      789419




      789419

























          active

          oldest

          votes











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2868895%2finference-in-bayesian-network%23new-answer', 'question_page');

          );

          Post as a guest



































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes










           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2868895%2finference-in-bayesian-network%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What is the equation of a 3D cone with generalised tilt?

          Color the edges and diagonals of a regular polygon

          Relationship between determinant of matrix and determinant of adjoint?