Jensen's inequality applied to Liapunov's CLT condition
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
The Liapunov's sufficient condition to the Central Limit Theorem says that if $exists delta$ for whom the following expression converges to $0$ then you can apply the CLT to the sequence's standardized partial sums:
$$ frac1left(sqrtoperatornameVarS_nright)^2+deltasum_k=1^nmathbbE(|X_k-mu_k|^2+delta) to 0 implies fracS_n-mathbbE(S_n)sqrtoperatornameVarS_n xrightarrowD mathcalN(0,1)
$$
My question is if when we choose $delta =2$, can i apply Jensen's inequality, $mathbbE(phi(X)) geq phi(mathbbE(X))$ when $phi$ is a convex function, as in:
beginalign
frac1left(sqrtoperatornameVarS_nright)^4sum_k=1^nmathbbE(|X_k-mu_k|^4) &=\
frac1left(sqrtoperatornameVarS_nright)^4sum_k=1^nmathbbE((|X_k-mu_k|^2)^2) &geq\
frac1left(sqrtoperatornameVarS_nright)^4sum_k=1^nmathbbE(|X_k-mu_k|^2)^2 & \
endalign
It's a fairly simple doubt. Thanks in advance for the help.
probability inequality jensen-inequality
add a comment |Â
up vote
2
down vote
favorite
The Liapunov's sufficient condition to the Central Limit Theorem says that if $exists delta$ for whom the following expression converges to $0$ then you can apply the CLT to the sequence's standardized partial sums:
$$ frac1left(sqrtoperatornameVarS_nright)^2+deltasum_k=1^nmathbbE(|X_k-mu_k|^2+delta) to 0 implies fracS_n-mathbbE(S_n)sqrtoperatornameVarS_n xrightarrowD mathcalN(0,1)
$$
My question is if when we choose $delta =2$, can i apply Jensen's inequality, $mathbbE(phi(X)) geq phi(mathbbE(X))$ when $phi$ is a convex function, as in:
beginalign
frac1left(sqrtoperatornameVarS_nright)^4sum_k=1^nmathbbE(|X_k-mu_k|^4) &=\
frac1left(sqrtoperatornameVarS_nright)^4sum_k=1^nmathbbE((|X_k-mu_k|^2)^2) &geq\
frac1left(sqrtoperatornameVarS_nright)^4sum_k=1^nmathbbE(|X_k-mu_k|^2)^2 & \
endalign
It's a fairly simple doubt. Thanks in advance for the help.
probability inequality jensen-inequality
2
Seems like a valid application of Jensen's inequality.
– Alex R.
Jul 31 at 21:14
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
The Liapunov's sufficient condition to the Central Limit Theorem says that if $exists delta$ for whom the following expression converges to $0$ then you can apply the CLT to the sequence's standardized partial sums:
$$ frac1left(sqrtoperatornameVarS_nright)^2+deltasum_k=1^nmathbbE(|X_k-mu_k|^2+delta) to 0 implies fracS_n-mathbbE(S_n)sqrtoperatornameVarS_n xrightarrowD mathcalN(0,1)
$$
My question is if when we choose $delta =2$, can i apply Jensen's inequality, $mathbbE(phi(X)) geq phi(mathbbE(X))$ when $phi$ is a convex function, as in:
beginalign
frac1left(sqrtoperatornameVarS_nright)^4sum_k=1^nmathbbE(|X_k-mu_k|^4) &=\
frac1left(sqrtoperatornameVarS_nright)^4sum_k=1^nmathbbE((|X_k-mu_k|^2)^2) &geq\
frac1left(sqrtoperatornameVarS_nright)^4sum_k=1^nmathbbE(|X_k-mu_k|^2)^2 & \
endalign
It's a fairly simple doubt. Thanks in advance for the help.
probability inequality jensen-inequality
The Liapunov's sufficient condition to the Central Limit Theorem says that if $exists delta$ for whom the following expression converges to $0$ then you can apply the CLT to the sequence's standardized partial sums:
$$ frac1left(sqrtoperatornameVarS_nright)^2+deltasum_k=1^nmathbbE(|X_k-mu_k|^2+delta) to 0 implies fracS_n-mathbbE(S_n)sqrtoperatornameVarS_n xrightarrowD mathcalN(0,1)
$$
My question is if when we choose $delta =2$, can i apply Jensen's inequality, $mathbbE(phi(X)) geq phi(mathbbE(X))$ when $phi$ is a convex function, as in:
beginalign
frac1left(sqrtoperatornameVarS_nright)^4sum_k=1^nmathbbE(|X_k-mu_k|^4) &=\
frac1left(sqrtoperatornameVarS_nright)^4sum_k=1^nmathbbE((|X_k-mu_k|^2)^2) &geq\
frac1left(sqrtoperatornameVarS_nright)^4sum_k=1^nmathbbE(|X_k-mu_k|^2)^2 & \
endalign
It's a fairly simple doubt. Thanks in advance for the help.
probability inequality jensen-inequality
edited Jul 31 at 20:57
asked Jul 31 at 18:22
Sergio Andrade
14312
14312
2
Seems like a valid application of Jensen's inequality.
– Alex R.
Jul 31 at 21:14
add a comment |Â
2
Seems like a valid application of Jensen's inequality.
– Alex R.
Jul 31 at 21:14
2
2
Seems like a valid application of Jensen's inequality.
– Alex R.
Jul 31 at 21:14
Seems like a valid application of Jensen's inequality.
– Alex R.
Jul 31 at 21:14
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2868330%2fjensens-inequality-applied-to-liapunovs-clt-condition%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
2
Seems like a valid application of Jensen's inequality.
– Alex R.
Jul 31 at 21:14