Notation of symmetric sum notation

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
3
down vote

favorite












When you use the symmetric sum notation, for example, $$sum_textsymabc+a$$ if there are 3 variables, then does abc count once, 3 times or 6 times?



I am confused about repetitions of the same expression in a symmetric sum notation.







share|cite|improve this question

























    up vote
    3
    down vote

    favorite












    When you use the symmetric sum notation, for example, $$sum_textsymabc+a$$ if there are 3 variables, then does abc count once, 3 times or 6 times?



    I am confused about repetitions of the same expression in a symmetric sum notation.







    share|cite|improve this question























      up vote
      3
      down vote

      favorite









      up vote
      3
      down vote

      favorite











      When you use the symmetric sum notation, for example, $$sum_textsymabc+a$$ if there are 3 variables, then does abc count once, 3 times or 6 times?



      I am confused about repetitions of the same expression in a symmetric sum notation.







      share|cite|improve this question













      When you use the symmetric sum notation, for example, $$sum_textsymabc+a$$ if there are 3 variables, then does abc count once, 3 times or 6 times?



      I am confused about repetitions of the same expression in a symmetric sum notation.









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Aug 3 at 7:17









      Michael Rozenberg

      87.3k1577178




      87.3k1577178









      asked Aug 2 at 0:51









      abc...

      1,175524




      1,175524




















          4 Answers
          4






          active

          oldest

          votes

















          up vote
          3
          down vote



          accepted










          I think if we want to work with symmetric sum, it's better to write $$sum_sym(abc+a)=6abc+2(a+b+c)$$ and
          $$sum_symabc+a=6abc+a.$$






          share|cite|improve this answer





















          • I've interpreted according to the first one!
            – gimusi
            Aug 2 at 1:57






          • 1




            @gimusi I think your explanation is right. Also, I think it's better $sumlimits_symQ(x_1,x_2,...,x_n)=sumlimits_sigmain S_nQleft(x_sigma(1),x_sigma(2),...,x_sigma(n)right).$
            – Michael Rozenberg
            Aug 2 at 2:22











          • Thanks for your kind suggestion! Bye
            – gimusi
            Aug 2 at 2:25

















          up vote
          1
          down vote













          The symmetric sum notation $sum_colorbluemathrmsym$ is the sum over all permutations of the elements of a predefined set $S$.




          • If $S=a,b,c$, then
            beginalign*
            colorbluesum_mathrmsymleft(abc+aright)&=(abc+a)+(acb+a)+(bac+b)+(bca+b)+(cab+c)+(cba+c)\
            &,,colorblue=6abc+2(a+b+c)
            endalign*


          • If $S=a,b$, then
            beginalign*
            colorbluesum_mathrmsymleft(abc+aright)&=(abc+a)+(bac+b)\
            &,,colorblue=2abc+a+b
            endalign*




          On the other hand the cyclic sum notation $sum_colorbluemathrmcyc$ is the sum over elements of a predefined set $S$ in a cyclic manner $ato bto ctocdotsto a$.




          • If $S=a,b,c$, then
            beginalign*
            colorbluesum_mathrmcycleft(abc+aright)&=(abc+a)+(bca+b)+(cab+c)\
            &,,colorblue=3abc+a+b+c
            endalign*

          • If $S=a,b$, then
            beginalign*
            colorbluesum_mathrmcycleft(abc+aright)&=(abc+a)+(bac+b)\
            &,,colorblue=2abc+a+b
            endalign*






          share|cite|improve this answer




























            up vote
            0
            down vote













            We have that



            $$sum_mathrmsymQ(x_i)=sum_sigma Q(x_sigma(i))$$



            for all permutations of $1, ldots , n$.



            Therefore it should be



            $$sum_textsymabc+a=Q(a,b,c)+Q(a,c,b)+Q(b,a,c)+Q(b,c,a)+Q(c,a,b)+Q(c,b,a)=$$



            $$=2abc+2a+2abc+2b+2abc+2c=6abc+2(a+b+c)$$






            share|cite|improve this answer






























              up vote
              0
              down vote













              The symetric sum of a function of $n$ arguments is the sum of all permutations for those arguments.   Sometimes written as $sumlimits_rm sym$, but preferably written a $sumlimits_sigma$



              $$sum_sigma f(a,b,c)= f(a,b,c)+f(a,c,b)+f(b,a,c)+f(b,c,a)+f(c,a,b)+f(c,b,a)$$



              So in this case $$sum_sigma abc = 3 abc$$




              The $k$-th elemental symmetric sum for a set of numbers is the sum of the products for all selections of $k$ elements from that set.   That is selection without order, so each selected tupple forms a single term.



              The first elemental symmetric sum is confussingly also indicated with the $sumlimits_rm sym$ operator.



              The $k$-th elemental symmetric sum is usually indicated with $sumlimits_rm sym^k$.



              And so, for example, $$sum_rm sym^2 a,b,c = ab + ac+ bc$$








              share|cite|improve this answer























              • If so, $sumlimits_cycab$ what is it?
                – Michael Rozenberg
                Aug 2 at 1:34










              Your Answer




              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: false,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );








               

              draft saved


              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2869628%2fnotation-of-symmetric-sum-notation%23new-answer', 'question_page');

              );

              Post as a guest






























              4 Answers
              4






              active

              oldest

              votes








              4 Answers
              4






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              3
              down vote



              accepted










              I think if we want to work with symmetric sum, it's better to write $$sum_sym(abc+a)=6abc+2(a+b+c)$$ and
              $$sum_symabc+a=6abc+a.$$






              share|cite|improve this answer





















              • I've interpreted according to the first one!
                – gimusi
                Aug 2 at 1:57






              • 1




                @gimusi I think your explanation is right. Also, I think it's better $sumlimits_symQ(x_1,x_2,...,x_n)=sumlimits_sigmain S_nQleft(x_sigma(1),x_sigma(2),...,x_sigma(n)right).$
                – Michael Rozenberg
                Aug 2 at 2:22











              • Thanks for your kind suggestion! Bye
                – gimusi
                Aug 2 at 2:25














              up vote
              3
              down vote



              accepted










              I think if we want to work with symmetric sum, it's better to write $$sum_sym(abc+a)=6abc+2(a+b+c)$$ and
              $$sum_symabc+a=6abc+a.$$






              share|cite|improve this answer





















              • I've interpreted according to the first one!
                – gimusi
                Aug 2 at 1:57






              • 1




                @gimusi I think your explanation is right. Also, I think it's better $sumlimits_symQ(x_1,x_2,...,x_n)=sumlimits_sigmain S_nQleft(x_sigma(1),x_sigma(2),...,x_sigma(n)right).$
                – Michael Rozenberg
                Aug 2 at 2:22











              • Thanks for your kind suggestion! Bye
                – gimusi
                Aug 2 at 2:25












              up vote
              3
              down vote



              accepted







              up vote
              3
              down vote



              accepted






              I think if we want to work with symmetric sum, it's better to write $$sum_sym(abc+a)=6abc+2(a+b+c)$$ and
              $$sum_symabc+a=6abc+a.$$






              share|cite|improve this answer













              I think if we want to work with symmetric sum, it's better to write $$sum_sym(abc+a)=6abc+2(a+b+c)$$ and
              $$sum_symabc+a=6abc+a.$$







              share|cite|improve this answer













              share|cite|improve this answer



              share|cite|improve this answer











              answered Aug 2 at 1:41









              Michael Rozenberg

              87.3k1577178




              87.3k1577178











              • I've interpreted according to the first one!
                – gimusi
                Aug 2 at 1:57






              • 1




                @gimusi I think your explanation is right. Also, I think it's better $sumlimits_symQ(x_1,x_2,...,x_n)=sumlimits_sigmain S_nQleft(x_sigma(1),x_sigma(2),...,x_sigma(n)right).$
                – Michael Rozenberg
                Aug 2 at 2:22











              • Thanks for your kind suggestion! Bye
                – gimusi
                Aug 2 at 2:25
















              • I've interpreted according to the first one!
                – gimusi
                Aug 2 at 1:57






              • 1




                @gimusi I think your explanation is right. Also, I think it's better $sumlimits_symQ(x_1,x_2,...,x_n)=sumlimits_sigmain S_nQleft(x_sigma(1),x_sigma(2),...,x_sigma(n)right).$
                – Michael Rozenberg
                Aug 2 at 2:22











              • Thanks for your kind suggestion! Bye
                – gimusi
                Aug 2 at 2:25















              I've interpreted according to the first one!
              – gimusi
              Aug 2 at 1:57




              I've interpreted according to the first one!
              – gimusi
              Aug 2 at 1:57




              1




              1




              @gimusi I think your explanation is right. Also, I think it's better $sumlimits_symQ(x_1,x_2,...,x_n)=sumlimits_sigmain S_nQleft(x_sigma(1),x_sigma(2),...,x_sigma(n)right).$
              – Michael Rozenberg
              Aug 2 at 2:22





              @gimusi I think your explanation is right. Also, I think it's better $sumlimits_symQ(x_1,x_2,...,x_n)=sumlimits_sigmain S_nQleft(x_sigma(1),x_sigma(2),...,x_sigma(n)right).$
              – Michael Rozenberg
              Aug 2 at 2:22













              Thanks for your kind suggestion! Bye
              – gimusi
              Aug 2 at 2:25




              Thanks for your kind suggestion! Bye
              – gimusi
              Aug 2 at 2:25










              up vote
              1
              down vote













              The symmetric sum notation $sum_colorbluemathrmsym$ is the sum over all permutations of the elements of a predefined set $S$.




              • If $S=a,b,c$, then
                beginalign*
                colorbluesum_mathrmsymleft(abc+aright)&=(abc+a)+(acb+a)+(bac+b)+(bca+b)+(cab+c)+(cba+c)\
                &,,colorblue=6abc+2(a+b+c)
                endalign*


              • If $S=a,b$, then
                beginalign*
                colorbluesum_mathrmsymleft(abc+aright)&=(abc+a)+(bac+b)\
                &,,colorblue=2abc+a+b
                endalign*




              On the other hand the cyclic sum notation $sum_colorbluemathrmcyc$ is the sum over elements of a predefined set $S$ in a cyclic manner $ato bto ctocdotsto a$.




              • If $S=a,b,c$, then
                beginalign*
                colorbluesum_mathrmcycleft(abc+aright)&=(abc+a)+(bca+b)+(cab+c)\
                &,,colorblue=3abc+a+b+c
                endalign*

              • If $S=a,b$, then
                beginalign*
                colorbluesum_mathrmcycleft(abc+aright)&=(abc+a)+(bac+b)\
                &,,colorblue=2abc+a+b
                endalign*






              share|cite|improve this answer

























                up vote
                1
                down vote













                The symmetric sum notation $sum_colorbluemathrmsym$ is the sum over all permutations of the elements of a predefined set $S$.




                • If $S=a,b,c$, then
                  beginalign*
                  colorbluesum_mathrmsymleft(abc+aright)&=(abc+a)+(acb+a)+(bac+b)+(bca+b)+(cab+c)+(cba+c)\
                  &,,colorblue=6abc+2(a+b+c)
                  endalign*


                • If $S=a,b$, then
                  beginalign*
                  colorbluesum_mathrmsymleft(abc+aright)&=(abc+a)+(bac+b)\
                  &,,colorblue=2abc+a+b
                  endalign*




                On the other hand the cyclic sum notation $sum_colorbluemathrmcyc$ is the sum over elements of a predefined set $S$ in a cyclic manner $ato bto ctocdotsto a$.




                • If $S=a,b,c$, then
                  beginalign*
                  colorbluesum_mathrmcycleft(abc+aright)&=(abc+a)+(bca+b)+(cab+c)\
                  &,,colorblue=3abc+a+b+c
                  endalign*

                • If $S=a,b$, then
                  beginalign*
                  colorbluesum_mathrmcycleft(abc+aright)&=(abc+a)+(bac+b)\
                  &,,colorblue=2abc+a+b
                  endalign*






                share|cite|improve this answer























                  up vote
                  1
                  down vote










                  up vote
                  1
                  down vote









                  The symmetric sum notation $sum_colorbluemathrmsym$ is the sum over all permutations of the elements of a predefined set $S$.




                  • If $S=a,b,c$, then
                    beginalign*
                    colorbluesum_mathrmsymleft(abc+aright)&=(abc+a)+(acb+a)+(bac+b)+(bca+b)+(cab+c)+(cba+c)\
                    &,,colorblue=6abc+2(a+b+c)
                    endalign*


                  • If $S=a,b$, then
                    beginalign*
                    colorbluesum_mathrmsymleft(abc+aright)&=(abc+a)+(bac+b)\
                    &,,colorblue=2abc+a+b
                    endalign*




                  On the other hand the cyclic sum notation $sum_colorbluemathrmcyc$ is the sum over elements of a predefined set $S$ in a cyclic manner $ato bto ctocdotsto a$.




                  • If $S=a,b,c$, then
                    beginalign*
                    colorbluesum_mathrmcycleft(abc+aright)&=(abc+a)+(bca+b)+(cab+c)\
                    &,,colorblue=3abc+a+b+c
                    endalign*

                  • If $S=a,b$, then
                    beginalign*
                    colorbluesum_mathrmcycleft(abc+aright)&=(abc+a)+(bac+b)\
                    &,,colorblue=2abc+a+b
                    endalign*






                  share|cite|improve this answer













                  The symmetric sum notation $sum_colorbluemathrmsym$ is the sum over all permutations of the elements of a predefined set $S$.




                  • If $S=a,b,c$, then
                    beginalign*
                    colorbluesum_mathrmsymleft(abc+aright)&=(abc+a)+(acb+a)+(bac+b)+(bca+b)+(cab+c)+(cba+c)\
                    &,,colorblue=6abc+2(a+b+c)
                    endalign*


                  • If $S=a,b$, then
                    beginalign*
                    colorbluesum_mathrmsymleft(abc+aright)&=(abc+a)+(bac+b)\
                    &,,colorblue=2abc+a+b
                    endalign*




                  On the other hand the cyclic sum notation $sum_colorbluemathrmcyc$ is the sum over elements of a predefined set $S$ in a cyclic manner $ato bto ctocdotsto a$.




                  • If $S=a,b,c$, then
                    beginalign*
                    colorbluesum_mathrmcycleft(abc+aright)&=(abc+a)+(bca+b)+(cab+c)\
                    &,,colorblue=3abc+a+b+c
                    endalign*

                  • If $S=a,b$, then
                    beginalign*
                    colorbluesum_mathrmcycleft(abc+aright)&=(abc+a)+(bac+b)\
                    &,,colorblue=2abc+a+b
                    endalign*







                  share|cite|improve this answer













                  share|cite|improve this answer



                  share|cite|improve this answer











                  answered Aug 2 at 13:44









                  Markus Scheuer

                  55.8k450135




                  55.8k450135




















                      up vote
                      0
                      down vote













                      We have that



                      $$sum_mathrmsymQ(x_i)=sum_sigma Q(x_sigma(i))$$



                      for all permutations of $1, ldots , n$.



                      Therefore it should be



                      $$sum_textsymabc+a=Q(a,b,c)+Q(a,c,b)+Q(b,a,c)+Q(b,c,a)+Q(c,a,b)+Q(c,b,a)=$$



                      $$=2abc+2a+2abc+2b+2abc+2c=6abc+2(a+b+c)$$






                      share|cite|improve this answer



























                        up vote
                        0
                        down vote













                        We have that



                        $$sum_mathrmsymQ(x_i)=sum_sigma Q(x_sigma(i))$$



                        for all permutations of $1, ldots , n$.



                        Therefore it should be



                        $$sum_textsymabc+a=Q(a,b,c)+Q(a,c,b)+Q(b,a,c)+Q(b,c,a)+Q(c,a,b)+Q(c,b,a)=$$



                        $$=2abc+2a+2abc+2b+2abc+2c=6abc+2(a+b+c)$$






                        share|cite|improve this answer

























                          up vote
                          0
                          down vote










                          up vote
                          0
                          down vote









                          We have that



                          $$sum_mathrmsymQ(x_i)=sum_sigma Q(x_sigma(i))$$



                          for all permutations of $1, ldots , n$.



                          Therefore it should be



                          $$sum_textsymabc+a=Q(a,b,c)+Q(a,c,b)+Q(b,a,c)+Q(b,c,a)+Q(c,a,b)+Q(c,b,a)=$$



                          $$=2abc+2a+2abc+2b+2abc+2c=6abc+2(a+b+c)$$






                          share|cite|improve this answer















                          We have that



                          $$sum_mathrmsymQ(x_i)=sum_sigma Q(x_sigma(i))$$



                          for all permutations of $1, ldots , n$.



                          Therefore it should be



                          $$sum_textsymabc+a=Q(a,b,c)+Q(a,c,b)+Q(b,a,c)+Q(b,c,a)+Q(c,a,b)+Q(c,b,a)=$$



                          $$=2abc+2a+2abc+2b+2abc+2c=6abc+2(a+b+c)$$







                          share|cite|improve this answer















                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Aug 2 at 1:24


























                          answered Aug 2 at 1:19









                          gimusi

                          63.8k73480




                          63.8k73480




















                              up vote
                              0
                              down vote













                              The symetric sum of a function of $n$ arguments is the sum of all permutations for those arguments.   Sometimes written as $sumlimits_rm sym$, but preferably written a $sumlimits_sigma$



                              $$sum_sigma f(a,b,c)= f(a,b,c)+f(a,c,b)+f(b,a,c)+f(b,c,a)+f(c,a,b)+f(c,b,a)$$



                              So in this case $$sum_sigma abc = 3 abc$$




                              The $k$-th elemental symmetric sum for a set of numbers is the sum of the products for all selections of $k$ elements from that set.   That is selection without order, so each selected tupple forms a single term.



                              The first elemental symmetric sum is confussingly also indicated with the $sumlimits_rm sym$ operator.



                              The $k$-th elemental symmetric sum is usually indicated with $sumlimits_rm sym^k$.



                              And so, for example, $$sum_rm sym^2 a,b,c = ab + ac+ bc$$








                              share|cite|improve this answer























                              • If so, $sumlimits_cycab$ what is it?
                                – Michael Rozenberg
                                Aug 2 at 1:34














                              up vote
                              0
                              down vote













                              The symetric sum of a function of $n$ arguments is the sum of all permutations for those arguments.   Sometimes written as $sumlimits_rm sym$, but preferably written a $sumlimits_sigma$



                              $$sum_sigma f(a,b,c)= f(a,b,c)+f(a,c,b)+f(b,a,c)+f(b,c,a)+f(c,a,b)+f(c,b,a)$$



                              So in this case $$sum_sigma abc = 3 abc$$




                              The $k$-th elemental symmetric sum for a set of numbers is the sum of the products for all selections of $k$ elements from that set.   That is selection without order, so each selected tupple forms a single term.



                              The first elemental symmetric sum is confussingly also indicated with the $sumlimits_rm sym$ operator.



                              The $k$-th elemental symmetric sum is usually indicated with $sumlimits_rm sym^k$.



                              And so, for example, $$sum_rm sym^2 a,b,c = ab + ac+ bc$$








                              share|cite|improve this answer























                              • If so, $sumlimits_cycab$ what is it?
                                – Michael Rozenberg
                                Aug 2 at 1:34












                              up vote
                              0
                              down vote










                              up vote
                              0
                              down vote









                              The symetric sum of a function of $n$ arguments is the sum of all permutations for those arguments.   Sometimes written as $sumlimits_rm sym$, but preferably written a $sumlimits_sigma$



                              $$sum_sigma f(a,b,c)= f(a,b,c)+f(a,c,b)+f(b,a,c)+f(b,c,a)+f(c,a,b)+f(c,b,a)$$



                              So in this case $$sum_sigma abc = 3 abc$$




                              The $k$-th elemental symmetric sum for a set of numbers is the sum of the products for all selections of $k$ elements from that set.   That is selection without order, so each selected tupple forms a single term.



                              The first elemental symmetric sum is confussingly also indicated with the $sumlimits_rm sym$ operator.



                              The $k$-th elemental symmetric sum is usually indicated with $sumlimits_rm sym^k$.



                              And so, for example, $$sum_rm sym^2 a,b,c = ab + ac+ bc$$








                              share|cite|improve this answer















                              The symetric sum of a function of $n$ arguments is the sum of all permutations for those arguments.   Sometimes written as $sumlimits_rm sym$, but preferably written a $sumlimits_sigma$



                              $$sum_sigma f(a,b,c)= f(a,b,c)+f(a,c,b)+f(b,a,c)+f(b,c,a)+f(c,a,b)+f(c,b,a)$$



                              So in this case $$sum_sigma abc = 3 abc$$




                              The $k$-th elemental symmetric sum for a set of numbers is the sum of the products for all selections of $k$ elements from that set.   That is selection without order, so each selected tupple forms a single term.



                              The first elemental symmetric sum is confussingly also indicated with the $sumlimits_rm sym$ operator.



                              The $k$-th elemental symmetric sum is usually indicated with $sumlimits_rm sym^k$.



                              And so, for example, $$sum_rm sym^2 a,b,c = ab + ac+ bc$$









                              share|cite|improve this answer















                              share|cite|improve this answer



                              share|cite|improve this answer








                              edited Aug 2 at 1:25


























                              answered Aug 2 at 1:19









                              Graham Kemp

                              80k43275




                              80k43275











                              • If so, $sumlimits_cycab$ what is it?
                                – Michael Rozenberg
                                Aug 2 at 1:34
















                              • If so, $sumlimits_cycab$ what is it?
                                – Michael Rozenberg
                                Aug 2 at 1:34















                              If so, $sumlimits_cycab$ what is it?
                              – Michael Rozenberg
                              Aug 2 at 1:34




                              If so, $sumlimits_cycab$ what is it?
                              – Michael Rozenberg
                              Aug 2 at 1:34












                               

                              draft saved


                              draft discarded


























                               


                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2869628%2fnotation-of-symmetric-sum-notation%23new-answer', 'question_page');

                              );

                              Post as a guest













































































                              Comments

                              Popular posts from this blog

                              What is the equation of a 3D cone with generalised tilt?

                              Color the edges and diagonals of a regular polygon

                              Relationship between determinant of matrix and determinant of adjoint?