Notation of symmetric sum notation
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
When you use the symmetric sum notation, for example, $$sum_textsymabc+a$$ if there are 3 variables, then does abc count once, 3 times or 6 times?
I am confused about repetitions of the same expression in a symmetric sum notation.
algebra-precalculus summation notation permutations symmetric-sum
add a comment |Â
up vote
3
down vote
favorite
When you use the symmetric sum notation, for example, $$sum_textsymabc+a$$ if there are 3 variables, then does abc count once, 3 times or 6 times?
I am confused about repetitions of the same expression in a symmetric sum notation.
algebra-precalculus summation notation permutations symmetric-sum
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
When you use the symmetric sum notation, for example, $$sum_textsymabc+a$$ if there are 3 variables, then does abc count once, 3 times or 6 times?
I am confused about repetitions of the same expression in a symmetric sum notation.
algebra-precalculus summation notation permutations symmetric-sum
When you use the symmetric sum notation, for example, $$sum_textsymabc+a$$ if there are 3 variables, then does abc count once, 3 times or 6 times?
I am confused about repetitions of the same expression in a symmetric sum notation.
algebra-precalculus summation notation permutations symmetric-sum
edited Aug 3 at 7:17
Michael Rozenberg
87.3k1577178
87.3k1577178
asked Aug 2 at 0:51


abc...
1,175524
1,175524
add a comment |Â
add a comment |Â
4 Answers
4
active
oldest
votes
up vote
3
down vote
accepted
I think if we want to work with symmetric sum, it's better to write $$sum_sym(abc+a)=6abc+2(a+b+c)$$ and
$$sum_symabc+a=6abc+a.$$
I've interpreted according to the first one!
– gimusi
Aug 2 at 1:57
1
@gimusi I think your explanation is right. Also, I think it's better $sumlimits_symQ(x_1,x_2,...,x_n)=sumlimits_sigmain S_nQleft(x_sigma(1),x_sigma(2),...,x_sigma(n)right).$
– Michael Rozenberg
Aug 2 at 2:22
Thanks for your kind suggestion! Bye
– gimusi
Aug 2 at 2:25
add a comment |Â
up vote
1
down vote
The symmetric sum notation $sum_colorbluemathrmsym$ is the sum over all permutations of the elements of a predefined set $S$.
If $S=a,b,c$, then
beginalign*
colorbluesum_mathrmsymleft(abc+aright)&=(abc+a)+(acb+a)+(bac+b)+(bca+b)+(cab+c)+(cba+c)\
&,,colorblue=6abc+2(a+b+c)
endalign*
If $S=a,b$, then
beginalign*
colorbluesum_mathrmsymleft(abc+aright)&=(abc+a)+(bac+b)\
&,,colorblue=2abc+a+b
endalign*
On the other hand the cyclic sum notation $sum_colorbluemathrmcyc$ is the sum over elements of a predefined set $S$ in a cyclic manner $ato bto ctocdotsto a$.
- If $S=a,b,c$, then
beginalign*
colorbluesum_mathrmcycleft(abc+aright)&=(abc+a)+(bca+b)+(cab+c)\
&,,colorblue=3abc+a+b+c
endalign*
- If $S=a,b$, then
beginalign*
colorbluesum_mathrmcycleft(abc+aright)&=(abc+a)+(bac+b)\
&,,colorblue=2abc+a+b
endalign*
add a comment |Â
up vote
0
down vote
We have that
$$sum_mathrmsymQ(x_i)=sum_sigma Q(x_sigma(i))$$
for all permutations of $1, ldots , n$.
Therefore it should be
$$sum_textsymabc+a=Q(a,b,c)+Q(a,c,b)+Q(b,a,c)+Q(b,c,a)+Q(c,a,b)+Q(c,b,a)=$$
$$=2abc+2a+2abc+2b+2abc+2c=6abc+2(a+b+c)$$
add a comment |Â
up vote
0
down vote
The symetric sum of a function of $n$ arguments is the sum of all permutations for those arguments. Â Sometimes written as $sumlimits_rm sym$, but preferably written a $sumlimits_sigma$
$$sum_sigma f(a,b,c)= f(a,b,c)+f(a,c,b)+f(b,a,c)+f(b,c,a)+f(c,a,b)+f(c,b,a)$$
So in this case $$sum_sigma abc = 3 abc$$
The $k$-th elemental symmetric sum for a set of numbers is the sum of the products for all selections of $k$ elements from that set. Â That is selection without order, so each selected tupple forms a single term.
The first elemental symmetric sum is confussingly also indicated with the $sumlimits_rm sym$ operator.
The $k$-th elemental symmetric sum is usually indicated with $sumlimits_rm sym^k$.
And so, for example, $$sum_rm sym^2 a,b,c = ab + ac+ bc$$
If so, $sumlimits_cycab$ what is it?
– Michael Rozenberg
Aug 2 at 1:34
add a comment |Â
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
accepted
I think if we want to work with symmetric sum, it's better to write $$sum_sym(abc+a)=6abc+2(a+b+c)$$ and
$$sum_symabc+a=6abc+a.$$
I've interpreted according to the first one!
– gimusi
Aug 2 at 1:57
1
@gimusi I think your explanation is right. Also, I think it's better $sumlimits_symQ(x_1,x_2,...,x_n)=sumlimits_sigmain S_nQleft(x_sigma(1),x_sigma(2),...,x_sigma(n)right).$
– Michael Rozenberg
Aug 2 at 2:22
Thanks for your kind suggestion! Bye
– gimusi
Aug 2 at 2:25
add a comment |Â
up vote
3
down vote
accepted
I think if we want to work with symmetric sum, it's better to write $$sum_sym(abc+a)=6abc+2(a+b+c)$$ and
$$sum_symabc+a=6abc+a.$$
I've interpreted according to the first one!
– gimusi
Aug 2 at 1:57
1
@gimusi I think your explanation is right. Also, I think it's better $sumlimits_symQ(x_1,x_2,...,x_n)=sumlimits_sigmain S_nQleft(x_sigma(1),x_sigma(2),...,x_sigma(n)right).$
– Michael Rozenberg
Aug 2 at 2:22
Thanks for your kind suggestion! Bye
– gimusi
Aug 2 at 2:25
add a comment |Â
up vote
3
down vote
accepted
up vote
3
down vote
accepted
I think if we want to work with symmetric sum, it's better to write $$sum_sym(abc+a)=6abc+2(a+b+c)$$ and
$$sum_symabc+a=6abc+a.$$
I think if we want to work with symmetric sum, it's better to write $$sum_sym(abc+a)=6abc+2(a+b+c)$$ and
$$sum_symabc+a=6abc+a.$$
answered Aug 2 at 1:41
Michael Rozenberg
87.3k1577178
87.3k1577178
I've interpreted according to the first one!
– gimusi
Aug 2 at 1:57
1
@gimusi I think your explanation is right. Also, I think it's better $sumlimits_symQ(x_1,x_2,...,x_n)=sumlimits_sigmain S_nQleft(x_sigma(1),x_sigma(2),...,x_sigma(n)right).$
– Michael Rozenberg
Aug 2 at 2:22
Thanks for your kind suggestion! Bye
– gimusi
Aug 2 at 2:25
add a comment |Â
I've interpreted according to the first one!
– gimusi
Aug 2 at 1:57
1
@gimusi I think your explanation is right. Also, I think it's better $sumlimits_symQ(x_1,x_2,...,x_n)=sumlimits_sigmain S_nQleft(x_sigma(1),x_sigma(2),...,x_sigma(n)right).$
– Michael Rozenberg
Aug 2 at 2:22
Thanks for your kind suggestion! Bye
– gimusi
Aug 2 at 2:25
I've interpreted according to the first one!
– gimusi
Aug 2 at 1:57
I've interpreted according to the first one!
– gimusi
Aug 2 at 1:57
1
1
@gimusi I think your explanation is right. Also, I think it's better $sumlimits_symQ(x_1,x_2,...,x_n)=sumlimits_sigmain S_nQleft(x_sigma(1),x_sigma(2),...,x_sigma(n)right).$
– Michael Rozenberg
Aug 2 at 2:22
@gimusi I think your explanation is right. Also, I think it's better $sumlimits_symQ(x_1,x_2,...,x_n)=sumlimits_sigmain S_nQleft(x_sigma(1),x_sigma(2),...,x_sigma(n)right).$
– Michael Rozenberg
Aug 2 at 2:22
Thanks for your kind suggestion! Bye
– gimusi
Aug 2 at 2:25
Thanks for your kind suggestion! Bye
– gimusi
Aug 2 at 2:25
add a comment |Â
up vote
1
down vote
The symmetric sum notation $sum_colorbluemathrmsym$ is the sum over all permutations of the elements of a predefined set $S$.
If $S=a,b,c$, then
beginalign*
colorbluesum_mathrmsymleft(abc+aright)&=(abc+a)+(acb+a)+(bac+b)+(bca+b)+(cab+c)+(cba+c)\
&,,colorblue=6abc+2(a+b+c)
endalign*
If $S=a,b$, then
beginalign*
colorbluesum_mathrmsymleft(abc+aright)&=(abc+a)+(bac+b)\
&,,colorblue=2abc+a+b
endalign*
On the other hand the cyclic sum notation $sum_colorbluemathrmcyc$ is the sum over elements of a predefined set $S$ in a cyclic manner $ato bto ctocdotsto a$.
- If $S=a,b,c$, then
beginalign*
colorbluesum_mathrmcycleft(abc+aright)&=(abc+a)+(bca+b)+(cab+c)\
&,,colorblue=3abc+a+b+c
endalign*
- If $S=a,b$, then
beginalign*
colorbluesum_mathrmcycleft(abc+aright)&=(abc+a)+(bac+b)\
&,,colorblue=2abc+a+b
endalign*
add a comment |Â
up vote
1
down vote
The symmetric sum notation $sum_colorbluemathrmsym$ is the sum over all permutations of the elements of a predefined set $S$.
If $S=a,b,c$, then
beginalign*
colorbluesum_mathrmsymleft(abc+aright)&=(abc+a)+(acb+a)+(bac+b)+(bca+b)+(cab+c)+(cba+c)\
&,,colorblue=6abc+2(a+b+c)
endalign*
If $S=a,b$, then
beginalign*
colorbluesum_mathrmsymleft(abc+aright)&=(abc+a)+(bac+b)\
&,,colorblue=2abc+a+b
endalign*
On the other hand the cyclic sum notation $sum_colorbluemathrmcyc$ is the sum over elements of a predefined set $S$ in a cyclic manner $ato bto ctocdotsto a$.
- If $S=a,b,c$, then
beginalign*
colorbluesum_mathrmcycleft(abc+aright)&=(abc+a)+(bca+b)+(cab+c)\
&,,colorblue=3abc+a+b+c
endalign*
- If $S=a,b$, then
beginalign*
colorbluesum_mathrmcycleft(abc+aright)&=(abc+a)+(bac+b)\
&,,colorblue=2abc+a+b
endalign*
add a comment |Â
up vote
1
down vote
up vote
1
down vote
The symmetric sum notation $sum_colorbluemathrmsym$ is the sum over all permutations of the elements of a predefined set $S$.
If $S=a,b,c$, then
beginalign*
colorbluesum_mathrmsymleft(abc+aright)&=(abc+a)+(acb+a)+(bac+b)+(bca+b)+(cab+c)+(cba+c)\
&,,colorblue=6abc+2(a+b+c)
endalign*
If $S=a,b$, then
beginalign*
colorbluesum_mathrmsymleft(abc+aright)&=(abc+a)+(bac+b)\
&,,colorblue=2abc+a+b
endalign*
On the other hand the cyclic sum notation $sum_colorbluemathrmcyc$ is the sum over elements of a predefined set $S$ in a cyclic manner $ato bto ctocdotsto a$.
- If $S=a,b,c$, then
beginalign*
colorbluesum_mathrmcycleft(abc+aright)&=(abc+a)+(bca+b)+(cab+c)\
&,,colorblue=3abc+a+b+c
endalign*
- If $S=a,b$, then
beginalign*
colorbluesum_mathrmcycleft(abc+aright)&=(abc+a)+(bac+b)\
&,,colorblue=2abc+a+b
endalign*
The symmetric sum notation $sum_colorbluemathrmsym$ is the sum over all permutations of the elements of a predefined set $S$.
If $S=a,b,c$, then
beginalign*
colorbluesum_mathrmsymleft(abc+aright)&=(abc+a)+(acb+a)+(bac+b)+(bca+b)+(cab+c)+(cba+c)\
&,,colorblue=6abc+2(a+b+c)
endalign*
If $S=a,b$, then
beginalign*
colorbluesum_mathrmsymleft(abc+aright)&=(abc+a)+(bac+b)\
&,,colorblue=2abc+a+b
endalign*
On the other hand the cyclic sum notation $sum_colorbluemathrmcyc$ is the sum over elements of a predefined set $S$ in a cyclic manner $ato bto ctocdotsto a$.
- If $S=a,b,c$, then
beginalign*
colorbluesum_mathrmcycleft(abc+aright)&=(abc+a)+(bca+b)+(cab+c)\
&,,colorblue=3abc+a+b+c
endalign*
- If $S=a,b$, then
beginalign*
colorbluesum_mathrmcycleft(abc+aright)&=(abc+a)+(bac+b)\
&,,colorblue=2abc+a+b
endalign*
answered Aug 2 at 13:44


Markus Scheuer
55.8k450135
55.8k450135
add a comment |Â
add a comment |Â
up vote
0
down vote
We have that
$$sum_mathrmsymQ(x_i)=sum_sigma Q(x_sigma(i))$$
for all permutations of $1, ldots , n$.
Therefore it should be
$$sum_textsymabc+a=Q(a,b,c)+Q(a,c,b)+Q(b,a,c)+Q(b,c,a)+Q(c,a,b)+Q(c,b,a)=$$
$$=2abc+2a+2abc+2b+2abc+2c=6abc+2(a+b+c)$$
add a comment |Â
up vote
0
down vote
We have that
$$sum_mathrmsymQ(x_i)=sum_sigma Q(x_sigma(i))$$
for all permutations of $1, ldots , n$.
Therefore it should be
$$sum_textsymabc+a=Q(a,b,c)+Q(a,c,b)+Q(b,a,c)+Q(b,c,a)+Q(c,a,b)+Q(c,b,a)=$$
$$=2abc+2a+2abc+2b+2abc+2c=6abc+2(a+b+c)$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
We have that
$$sum_mathrmsymQ(x_i)=sum_sigma Q(x_sigma(i))$$
for all permutations of $1, ldots , n$.
Therefore it should be
$$sum_textsymabc+a=Q(a,b,c)+Q(a,c,b)+Q(b,a,c)+Q(b,c,a)+Q(c,a,b)+Q(c,b,a)=$$
$$=2abc+2a+2abc+2b+2abc+2c=6abc+2(a+b+c)$$
We have that
$$sum_mathrmsymQ(x_i)=sum_sigma Q(x_sigma(i))$$
for all permutations of $1, ldots , n$.
Therefore it should be
$$sum_textsymabc+a=Q(a,b,c)+Q(a,c,b)+Q(b,a,c)+Q(b,c,a)+Q(c,a,b)+Q(c,b,a)=$$
$$=2abc+2a+2abc+2b+2abc+2c=6abc+2(a+b+c)$$
edited Aug 2 at 1:24
answered Aug 2 at 1:19
gimusi
63.8k73480
63.8k73480
add a comment |Â
add a comment |Â
up vote
0
down vote
The symetric sum of a function of $n$ arguments is the sum of all permutations for those arguments. Â Sometimes written as $sumlimits_rm sym$, but preferably written a $sumlimits_sigma$
$$sum_sigma f(a,b,c)= f(a,b,c)+f(a,c,b)+f(b,a,c)+f(b,c,a)+f(c,a,b)+f(c,b,a)$$
So in this case $$sum_sigma abc = 3 abc$$
The $k$-th elemental symmetric sum for a set of numbers is the sum of the products for all selections of $k$ elements from that set. Â That is selection without order, so each selected tupple forms a single term.
The first elemental symmetric sum is confussingly also indicated with the $sumlimits_rm sym$ operator.
The $k$-th elemental symmetric sum is usually indicated with $sumlimits_rm sym^k$.
And so, for example, $$sum_rm sym^2 a,b,c = ab + ac+ bc$$
If so, $sumlimits_cycab$ what is it?
– Michael Rozenberg
Aug 2 at 1:34
add a comment |Â
up vote
0
down vote
The symetric sum of a function of $n$ arguments is the sum of all permutations for those arguments. Â Sometimes written as $sumlimits_rm sym$, but preferably written a $sumlimits_sigma$
$$sum_sigma f(a,b,c)= f(a,b,c)+f(a,c,b)+f(b,a,c)+f(b,c,a)+f(c,a,b)+f(c,b,a)$$
So in this case $$sum_sigma abc = 3 abc$$
The $k$-th elemental symmetric sum for a set of numbers is the sum of the products for all selections of $k$ elements from that set. Â That is selection without order, so each selected tupple forms a single term.
The first elemental symmetric sum is confussingly also indicated with the $sumlimits_rm sym$ operator.
The $k$-th elemental symmetric sum is usually indicated with $sumlimits_rm sym^k$.
And so, for example, $$sum_rm sym^2 a,b,c = ab + ac+ bc$$
If so, $sumlimits_cycab$ what is it?
– Michael Rozenberg
Aug 2 at 1:34
add a comment |Â
up vote
0
down vote
up vote
0
down vote
The symetric sum of a function of $n$ arguments is the sum of all permutations for those arguments. Â Sometimes written as $sumlimits_rm sym$, but preferably written a $sumlimits_sigma$
$$sum_sigma f(a,b,c)= f(a,b,c)+f(a,c,b)+f(b,a,c)+f(b,c,a)+f(c,a,b)+f(c,b,a)$$
So in this case $$sum_sigma abc = 3 abc$$
The $k$-th elemental symmetric sum for a set of numbers is the sum of the products for all selections of $k$ elements from that set. Â That is selection without order, so each selected tupple forms a single term.
The first elemental symmetric sum is confussingly also indicated with the $sumlimits_rm sym$ operator.
The $k$-th elemental symmetric sum is usually indicated with $sumlimits_rm sym^k$.
And so, for example, $$sum_rm sym^2 a,b,c = ab + ac+ bc$$
The symetric sum of a function of $n$ arguments is the sum of all permutations for those arguments. Â Sometimes written as $sumlimits_rm sym$, but preferably written a $sumlimits_sigma$
$$sum_sigma f(a,b,c)= f(a,b,c)+f(a,c,b)+f(b,a,c)+f(b,c,a)+f(c,a,b)+f(c,b,a)$$
So in this case $$sum_sigma abc = 3 abc$$
The $k$-th elemental symmetric sum for a set of numbers is the sum of the products for all selections of $k$ elements from that set. Â That is selection without order, so each selected tupple forms a single term.
The first elemental symmetric sum is confussingly also indicated with the $sumlimits_rm sym$ operator.
The $k$-th elemental symmetric sum is usually indicated with $sumlimits_rm sym^k$.
And so, for example, $$sum_rm sym^2 a,b,c = ab + ac+ bc$$
edited Aug 2 at 1:25
answered Aug 2 at 1:19


Graham Kemp
80k43275
80k43275
If so, $sumlimits_cycab$ what is it?
– Michael Rozenberg
Aug 2 at 1:34
add a comment |Â
If so, $sumlimits_cycab$ what is it?
– Michael Rozenberg
Aug 2 at 1:34
If so, $sumlimits_cycab$ what is it?
– Michael Rozenberg
Aug 2 at 1:34
If so, $sumlimits_cycab$ what is it?
– Michael Rozenberg
Aug 2 at 1:34
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2869628%2fnotation-of-symmetric-sum-notation%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password