Representation of continuous local martingales with spatial parameter

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Let



  • $(Omega,mathcal A,operatorname P)$ be a complete probability space

  • $T>0$

  • $I:=(0,T]$

  • $(mathcal F_t)_tinoverline I$ be a complete and right-continuous filtration on $(Omega,mathcal A,operatorname P)$

  • $mathcal M_c^2(mathcal F,operatorname P)$ denote the set of real-valued continuous square-integrable $mathcal F$-martingales on $(Omega,mathcal A,operatorname P)$ equipped with $$langle M,Nrangle_mathcal M_c^2(mathcal F,operatorname P):=operatorname Eleft[[M,N]_Tright];;;textfor M,Ninmathcal M_c^2(mathcal F,operatorname P),$$ where $[M,N]$ denotes the quadratic variation of $M$ and $N$

  • $(M^n)_ninmathbb N$ be an orthogonal basis of $mathcal M_c^2(mathcal F,operatorname P)$

  • $mathcal M_c,:textloc(mathcal F,operatorname P)$ denote the set of real-valued continuous local $mathcal F$-martingales on $(Omega,mathcal A,operatorname P)$

  • $E$ be a separable metric space

  • $M:Omegatimesoverline Itimes Etomathbb R$ with $$M(;cdot;,;cdot;,x)inmathcal M_c,:textloc(mathcal F,operatorname P);;;textfor all xin E$$ and $$M(omega,t,;cdot;)in C^0(E);;;textfor all (omega,t)inOmegatimesoverline I$$

How can we show that there is a sequence $(f^n)_ninmathbb N$ with $f^n:Omegatimesoverline Itimes Etomathbb R$ being $mathcal Aotimesmathcal B(overline I)otimesmathcal B(E)$-measurable, $f^n(;cdot;,;cdot;,x)$ being $mathcal F$-predictable for all $xin E$ and $$M_t(x)=sum_ninmathbb Nint_0^tf^n(s,x):rm dM_s^n;;;textfor all tinoverline Itext almost surely for all xin E?tag1$$







share|cite|improve this question













This question has an open bounty worth +50
reputation from 0xbadf00d ending ending at 2018-08-10 22:54:20Z">in 2 days.


This question has not received enough attention.



















    up vote
    0
    down vote

    favorite












    Let



    • $(Omega,mathcal A,operatorname P)$ be a complete probability space

    • $T>0$

    • $I:=(0,T]$

    • $(mathcal F_t)_tinoverline I$ be a complete and right-continuous filtration on $(Omega,mathcal A,operatorname P)$

    • $mathcal M_c^2(mathcal F,operatorname P)$ denote the set of real-valued continuous square-integrable $mathcal F$-martingales on $(Omega,mathcal A,operatorname P)$ equipped with $$langle M,Nrangle_mathcal M_c^2(mathcal F,operatorname P):=operatorname Eleft[[M,N]_Tright];;;textfor M,Ninmathcal M_c^2(mathcal F,operatorname P),$$ where $[M,N]$ denotes the quadratic variation of $M$ and $N$

    • $(M^n)_ninmathbb N$ be an orthogonal basis of $mathcal M_c^2(mathcal F,operatorname P)$

    • $mathcal M_c,:textloc(mathcal F,operatorname P)$ denote the set of real-valued continuous local $mathcal F$-martingales on $(Omega,mathcal A,operatorname P)$

    • $E$ be a separable metric space

    • $M:Omegatimesoverline Itimes Etomathbb R$ with $$M(;cdot;,;cdot;,x)inmathcal M_c,:textloc(mathcal F,operatorname P);;;textfor all xin E$$ and $$M(omega,t,;cdot;)in C^0(E);;;textfor all (omega,t)inOmegatimesoverline I$$

    How can we show that there is a sequence $(f^n)_ninmathbb N$ with $f^n:Omegatimesoverline Itimes Etomathbb R$ being $mathcal Aotimesmathcal B(overline I)otimesmathcal B(E)$-measurable, $f^n(;cdot;,;cdot;,x)$ being $mathcal F$-predictable for all $xin E$ and $$M_t(x)=sum_ninmathbb Nint_0^tf^n(s,x):rm dM_s^n;;;textfor all tinoverline Itext almost surely for all xin E?tag1$$







    share|cite|improve this question













    This question has an open bounty worth +50
    reputation from 0xbadf00d ending ending at 2018-08-10 22:54:20Z">in 2 days.


    This question has not received enough attention.

















      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Let



      • $(Omega,mathcal A,operatorname P)$ be a complete probability space

      • $T>0$

      • $I:=(0,T]$

      • $(mathcal F_t)_tinoverline I$ be a complete and right-continuous filtration on $(Omega,mathcal A,operatorname P)$

      • $mathcal M_c^2(mathcal F,operatorname P)$ denote the set of real-valued continuous square-integrable $mathcal F$-martingales on $(Omega,mathcal A,operatorname P)$ equipped with $$langle M,Nrangle_mathcal M_c^2(mathcal F,operatorname P):=operatorname Eleft[[M,N]_Tright];;;textfor M,Ninmathcal M_c^2(mathcal F,operatorname P),$$ where $[M,N]$ denotes the quadratic variation of $M$ and $N$

      • $(M^n)_ninmathbb N$ be an orthogonal basis of $mathcal M_c^2(mathcal F,operatorname P)$

      • $mathcal M_c,:textloc(mathcal F,operatorname P)$ denote the set of real-valued continuous local $mathcal F$-martingales on $(Omega,mathcal A,operatorname P)$

      • $E$ be a separable metric space

      • $M:Omegatimesoverline Itimes Etomathbb R$ with $$M(;cdot;,;cdot;,x)inmathcal M_c,:textloc(mathcal F,operatorname P);;;textfor all xin E$$ and $$M(omega,t,;cdot;)in C^0(E);;;textfor all (omega,t)inOmegatimesoverline I$$

      How can we show that there is a sequence $(f^n)_ninmathbb N$ with $f^n:Omegatimesoverline Itimes Etomathbb R$ being $mathcal Aotimesmathcal B(overline I)otimesmathcal B(E)$-measurable, $f^n(;cdot;,;cdot;,x)$ being $mathcal F$-predictable for all $xin E$ and $$M_t(x)=sum_ninmathbb Nint_0^tf^n(s,x):rm dM_s^n;;;textfor all tinoverline Itext almost surely for all xin E?tag1$$







      share|cite|improve this question











      Let



      • $(Omega,mathcal A,operatorname P)$ be a complete probability space

      • $T>0$

      • $I:=(0,T]$

      • $(mathcal F_t)_tinoverline I$ be a complete and right-continuous filtration on $(Omega,mathcal A,operatorname P)$

      • $mathcal M_c^2(mathcal F,operatorname P)$ denote the set of real-valued continuous square-integrable $mathcal F$-martingales on $(Omega,mathcal A,operatorname P)$ equipped with $$langle M,Nrangle_mathcal M_c^2(mathcal F,operatorname P):=operatorname Eleft[[M,N]_Tright];;;textfor M,Ninmathcal M_c^2(mathcal F,operatorname P),$$ where $[M,N]$ denotes the quadratic variation of $M$ and $N$

      • $(M^n)_ninmathbb N$ be an orthogonal basis of $mathcal M_c^2(mathcal F,operatorname P)$

      • $mathcal M_c,:textloc(mathcal F,operatorname P)$ denote the set of real-valued continuous local $mathcal F$-martingales on $(Omega,mathcal A,operatorname P)$

      • $E$ be a separable metric space

      • $M:Omegatimesoverline Itimes Etomathbb R$ with $$M(;cdot;,;cdot;,x)inmathcal M_c,:textloc(mathcal F,operatorname P);;;textfor all xin E$$ and $$M(omega,t,;cdot;)in C^0(E);;;textfor all (omega,t)inOmegatimesoverline I$$

      How can we show that there is a sequence $(f^n)_ninmathbb N$ with $f^n:Omegatimesoverline Itimes Etomathbb R$ being $mathcal Aotimesmathcal B(overline I)otimesmathcal B(E)$-measurable, $f^n(;cdot;,;cdot;,x)$ being $mathcal F$-predictable for all $xin E$ and $$M_t(x)=sum_ninmathbb Nint_0^tf^n(s,x):rm dM_s^n;;;textfor all tinoverline Itext almost surely for all xin E?tag1$$









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked Jul 31 at 18:05









      0xbadf00d

      1,92041028




      1,92041028






      This question has an open bounty worth +50
      reputation from 0xbadf00d ending ending at 2018-08-10 22:54:20Z">in 2 days.


      This question has not received enough attention.








      This question has an open bounty worth +50
      reputation from 0xbadf00d ending ending at 2018-08-10 22:54:20Z">in 2 days.


      This question has not received enough attention.



























          active

          oldest

          votes











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2868312%2frepresentation-of-continuous-local-martingales-with-spatial-parameter%23new-answer', 'question_page');

          );

          Post as a guest



































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes










           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2868312%2frepresentation-of-continuous-local-martingales-with-spatial-parameter%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What is the equation of a 3D cone with generalised tilt?

          Color the edges and diagonals of a regular polygon

          Relationship between determinant of matrix and determinant of adjoint?