Representation of continuous local martingales with spatial parameter
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Let
- $(Omega,mathcal A,operatorname P)$ be a complete probability space
- $T>0$
- $I:=(0,T]$
- $(mathcal F_t)_tinoverline I$ be a complete and right-continuous filtration on $(Omega,mathcal A,operatorname P)$
- $mathcal M_c^2(mathcal F,operatorname P)$ denote the set of real-valued continuous square-integrable $mathcal F$-martingales on $(Omega,mathcal A,operatorname P)$ equipped with $$langle M,Nrangle_mathcal M_c^2(mathcal F,operatorname P):=operatorname Eleft[[M,N]_Tright];;;textfor M,Ninmathcal M_c^2(mathcal F,operatorname P),$$ where $[M,N]$ denotes the quadratic variation of $M$ and $N$
- $(M^n)_ninmathbb N$ be an orthogonal basis of $mathcal M_c^2(mathcal F,operatorname P)$
- $mathcal M_c,:textloc(mathcal F,operatorname P)$ denote the set of real-valued continuous local $mathcal F$-martingales on $(Omega,mathcal A,operatorname P)$
- $E$ be a separable metric space
- $M:Omegatimesoverline Itimes Etomathbb R$ with $$M(;cdot;,;cdot;,x)inmathcal M_c,:textloc(mathcal F,operatorname P);;;textfor all xin E$$ and $$M(omega,t,;cdot;)in C^0(E);;;textfor all (omega,t)inOmegatimesoverline I$$
How can we show that there is a sequence $(f^n)_ninmathbb N$ with $f^n:Omegatimesoverline Itimes Etomathbb R$ being $mathcal Aotimesmathcal B(overline I)otimesmathcal B(E)$-measurable, $f^n(;cdot;,;cdot;,x)$ being $mathcal F$-predictable for all $xin E$ and $$M_t(x)=sum_ninmathbb Nint_0^tf^n(s,x):rm dM_s^n;;;textfor all tinoverline Itext almost surely for all xin E?tag1$$
probability-theory stochastic-processes stochastic-calculus stochastic-integrals stochastic-analysis
This question has an open bounty worth +50
reputation from 0xbadf00d ending ending at 2018-08-10 22:54:20Z">in 2 days.
This question has not received enough attention.
add a comment |Â
up vote
0
down vote
favorite
Let
- $(Omega,mathcal A,operatorname P)$ be a complete probability space
- $T>0$
- $I:=(0,T]$
- $(mathcal F_t)_tinoverline I$ be a complete and right-continuous filtration on $(Omega,mathcal A,operatorname P)$
- $mathcal M_c^2(mathcal F,operatorname P)$ denote the set of real-valued continuous square-integrable $mathcal F$-martingales on $(Omega,mathcal A,operatorname P)$ equipped with $$langle M,Nrangle_mathcal M_c^2(mathcal F,operatorname P):=operatorname Eleft[[M,N]_Tright];;;textfor M,Ninmathcal M_c^2(mathcal F,operatorname P),$$ where $[M,N]$ denotes the quadratic variation of $M$ and $N$
- $(M^n)_ninmathbb N$ be an orthogonal basis of $mathcal M_c^2(mathcal F,operatorname P)$
- $mathcal M_c,:textloc(mathcal F,operatorname P)$ denote the set of real-valued continuous local $mathcal F$-martingales on $(Omega,mathcal A,operatorname P)$
- $E$ be a separable metric space
- $M:Omegatimesoverline Itimes Etomathbb R$ with $$M(;cdot;,;cdot;,x)inmathcal M_c,:textloc(mathcal F,operatorname P);;;textfor all xin E$$ and $$M(omega,t,;cdot;)in C^0(E);;;textfor all (omega,t)inOmegatimesoverline I$$
How can we show that there is a sequence $(f^n)_ninmathbb N$ with $f^n:Omegatimesoverline Itimes Etomathbb R$ being $mathcal Aotimesmathcal B(overline I)otimesmathcal B(E)$-measurable, $f^n(;cdot;,;cdot;,x)$ being $mathcal F$-predictable for all $xin E$ and $$M_t(x)=sum_ninmathbb Nint_0^tf^n(s,x):rm dM_s^n;;;textfor all tinoverline Itext almost surely for all xin E?tag1$$
probability-theory stochastic-processes stochastic-calculus stochastic-integrals stochastic-analysis
This question has an open bounty worth +50
reputation from 0xbadf00d ending ending at 2018-08-10 22:54:20Z">in 2 days.
This question has not received enough attention.
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let
- $(Omega,mathcal A,operatorname P)$ be a complete probability space
- $T>0$
- $I:=(0,T]$
- $(mathcal F_t)_tinoverline I$ be a complete and right-continuous filtration on $(Omega,mathcal A,operatorname P)$
- $mathcal M_c^2(mathcal F,operatorname P)$ denote the set of real-valued continuous square-integrable $mathcal F$-martingales on $(Omega,mathcal A,operatorname P)$ equipped with $$langle M,Nrangle_mathcal M_c^2(mathcal F,operatorname P):=operatorname Eleft[[M,N]_Tright];;;textfor M,Ninmathcal M_c^2(mathcal F,operatorname P),$$ where $[M,N]$ denotes the quadratic variation of $M$ and $N$
- $(M^n)_ninmathbb N$ be an orthogonal basis of $mathcal M_c^2(mathcal F,operatorname P)$
- $mathcal M_c,:textloc(mathcal F,operatorname P)$ denote the set of real-valued continuous local $mathcal F$-martingales on $(Omega,mathcal A,operatorname P)$
- $E$ be a separable metric space
- $M:Omegatimesoverline Itimes Etomathbb R$ with $$M(;cdot;,;cdot;,x)inmathcal M_c,:textloc(mathcal F,operatorname P);;;textfor all xin E$$ and $$M(omega,t,;cdot;)in C^0(E);;;textfor all (omega,t)inOmegatimesoverline I$$
How can we show that there is a sequence $(f^n)_ninmathbb N$ with $f^n:Omegatimesoverline Itimes Etomathbb R$ being $mathcal Aotimesmathcal B(overline I)otimesmathcal B(E)$-measurable, $f^n(;cdot;,;cdot;,x)$ being $mathcal F$-predictable for all $xin E$ and $$M_t(x)=sum_ninmathbb Nint_0^tf^n(s,x):rm dM_s^n;;;textfor all tinoverline Itext almost surely for all xin E?tag1$$
probability-theory stochastic-processes stochastic-calculus stochastic-integrals stochastic-analysis
Let
- $(Omega,mathcal A,operatorname P)$ be a complete probability space
- $T>0$
- $I:=(0,T]$
- $(mathcal F_t)_tinoverline I$ be a complete and right-continuous filtration on $(Omega,mathcal A,operatorname P)$
- $mathcal M_c^2(mathcal F,operatorname P)$ denote the set of real-valued continuous square-integrable $mathcal F$-martingales on $(Omega,mathcal A,operatorname P)$ equipped with $$langle M,Nrangle_mathcal M_c^2(mathcal F,operatorname P):=operatorname Eleft[[M,N]_Tright];;;textfor M,Ninmathcal M_c^2(mathcal F,operatorname P),$$ where $[M,N]$ denotes the quadratic variation of $M$ and $N$
- $(M^n)_ninmathbb N$ be an orthogonal basis of $mathcal M_c^2(mathcal F,operatorname P)$
- $mathcal M_c,:textloc(mathcal F,operatorname P)$ denote the set of real-valued continuous local $mathcal F$-martingales on $(Omega,mathcal A,operatorname P)$
- $E$ be a separable metric space
- $M:Omegatimesoverline Itimes Etomathbb R$ with $$M(;cdot;,;cdot;,x)inmathcal M_c,:textloc(mathcal F,operatorname P);;;textfor all xin E$$ and $$M(omega,t,;cdot;)in C^0(E);;;textfor all (omega,t)inOmegatimesoverline I$$
How can we show that there is a sequence $(f^n)_ninmathbb N$ with $f^n:Omegatimesoverline Itimes Etomathbb R$ being $mathcal Aotimesmathcal B(overline I)otimesmathcal B(E)$-measurable, $f^n(;cdot;,;cdot;,x)$ being $mathcal F$-predictable for all $xin E$ and $$M_t(x)=sum_ninmathbb Nint_0^tf^n(s,x):rm dM_s^n;;;textfor all tinoverline Itext almost surely for all xin E?tag1$$
probability-theory stochastic-processes stochastic-calculus stochastic-integrals stochastic-analysis
asked Jul 31 at 18:05
0xbadf00d
1,92041028
1,92041028
This question has an open bounty worth +50
reputation from 0xbadf00d ending ending at 2018-08-10 22:54:20Z">in 2 days.
This question has not received enough attention.
This question has an open bounty worth +50
reputation from 0xbadf00d ending ending at 2018-08-10 22:54:20Z">in 2 days.
This question has not received enough attention.
add a comment |Â
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2868312%2frepresentation-of-continuous-local-martingales-with-spatial-parameter%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password