The D'Alembert solution for an $n+1$ dimensional wave equation

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite
2












I have been solving the wave equation in the upper half-space $mathbbR^n+1_+$ $$
D^2_ttu(x,t)=nabla^2u, quad u(x,0)=f(x), quad D_tu(x,0)=g(x), quad xin mathbbR^n, quad t>0
$$
using Fourier transform and obtained the following:



$$
hatu(xi,t)=hatf(xi)cosxi+
hatg(xi)fracsinxixi, quad xiin mathbbR^n, quad t>0.
$$
Hence, the inversion formula gives for $(x,t)in mathbbR^n+1_+$,
$$
u(x,t)=frac1(2pi)^nint_mathbbR^nhatf(xi)cos(e^ixicdot xdxi+
frac1(2pi)^nint_mathbbR^nhatg(xi)fracsin(xie^ixicdot xdxi=u_1+u_2.
$$
I consider first $$u_2=frac1(2pi)^nint_mathbbR^nhatg(xi)fracsin(xie^ixicdot xdxi=(gast T)(x).
$$
Where $$T(x)=(hatT(xi))^vee=left[left(fracsin(xiright)^veeright]^wedge.$$



For $n=1$ that is, in one dimension;



I consider $frac12chi_[-t,t]=left(fracsin(xiright)^vee$ from the fact that $hatchi_[-t,t]=int_-t^t1cdot e^-ixcdotxidx$.



  1. My first problem is that I am failing to get an expression of D'Alembert solution

$$u(x,t)=F(x+t)+ G(x-t).$$



  1. My second problem is that I want to see how the solution for $n=2$, that is, in $2$-dimension is obtained. Especially, on how to evaluate along the boundary of a circle.






share|cite|improve this question

























    up vote
    0
    down vote

    favorite
    2












    I have been solving the wave equation in the upper half-space $mathbbR^n+1_+$ $$
    D^2_ttu(x,t)=nabla^2u, quad u(x,0)=f(x), quad D_tu(x,0)=g(x), quad xin mathbbR^n, quad t>0
    $$
    using Fourier transform and obtained the following:



    $$
    hatu(xi,t)=hatf(xi)cosxi+
    hatg(xi)fracsinxixi, quad xiin mathbbR^n, quad t>0.
    $$
    Hence, the inversion formula gives for $(x,t)in mathbbR^n+1_+$,
    $$
    u(x,t)=frac1(2pi)^nint_mathbbR^nhatf(xi)cos(e^ixicdot xdxi+
    frac1(2pi)^nint_mathbbR^nhatg(xi)fracsin(xie^ixicdot xdxi=u_1+u_2.
    $$
    I consider first $$u_2=frac1(2pi)^nint_mathbbR^nhatg(xi)fracsin(xie^ixicdot xdxi=(gast T)(x).
    $$
    Where $$T(x)=(hatT(xi))^vee=left[left(fracsin(xiright)^veeright]^wedge.$$



    For $n=1$ that is, in one dimension;



    I consider $frac12chi_[-t,t]=left(fracsin(xiright)^vee$ from the fact that $hatchi_[-t,t]=int_-t^t1cdot e^-ixcdotxidx$.



    1. My first problem is that I am failing to get an expression of D'Alembert solution

    $$u(x,t)=F(x+t)+ G(x-t).$$



    1. My second problem is that I want to see how the solution for $n=2$, that is, in $2$-dimension is obtained. Especially, on how to evaluate along the boundary of a circle.






    share|cite|improve this question























      up vote
      0
      down vote

      favorite
      2









      up vote
      0
      down vote

      favorite
      2






      2





      I have been solving the wave equation in the upper half-space $mathbbR^n+1_+$ $$
      D^2_ttu(x,t)=nabla^2u, quad u(x,0)=f(x), quad D_tu(x,0)=g(x), quad xin mathbbR^n, quad t>0
      $$
      using Fourier transform and obtained the following:



      $$
      hatu(xi,t)=hatf(xi)cosxi+
      hatg(xi)fracsinxixi, quad xiin mathbbR^n, quad t>0.
      $$
      Hence, the inversion formula gives for $(x,t)in mathbbR^n+1_+$,
      $$
      u(x,t)=frac1(2pi)^nint_mathbbR^nhatf(xi)cos(e^ixicdot xdxi+
      frac1(2pi)^nint_mathbbR^nhatg(xi)fracsin(xie^ixicdot xdxi=u_1+u_2.
      $$
      I consider first $$u_2=frac1(2pi)^nint_mathbbR^nhatg(xi)fracsin(xie^ixicdot xdxi=(gast T)(x).
      $$
      Where $$T(x)=(hatT(xi))^vee=left[left(fracsin(xiright)^veeright]^wedge.$$



      For $n=1$ that is, in one dimension;



      I consider $frac12chi_[-t,t]=left(fracsin(xiright)^vee$ from the fact that $hatchi_[-t,t]=int_-t^t1cdot e^-ixcdotxidx$.



      1. My first problem is that I am failing to get an expression of D'Alembert solution

      $$u(x,t)=F(x+t)+ G(x-t).$$



      1. My second problem is that I want to see how the solution for $n=2$, that is, in $2$-dimension is obtained. Especially, on how to evaluate along the boundary of a circle.






      share|cite|improve this question













      I have been solving the wave equation in the upper half-space $mathbbR^n+1_+$ $$
      D^2_ttu(x,t)=nabla^2u, quad u(x,0)=f(x), quad D_tu(x,0)=g(x), quad xin mathbbR^n, quad t>0
      $$
      using Fourier transform and obtained the following:



      $$
      hatu(xi,t)=hatf(xi)cosxi+
      hatg(xi)fracsinxixi, quad xiin mathbbR^n, quad t>0.
      $$
      Hence, the inversion formula gives for $(x,t)in mathbbR^n+1_+$,
      $$
      u(x,t)=frac1(2pi)^nint_mathbbR^nhatf(xi)cos(e^ixicdot xdxi+
      frac1(2pi)^nint_mathbbR^nhatg(xi)fracsin(xie^ixicdot xdxi=u_1+u_2.
      $$
      I consider first $$u_2=frac1(2pi)^nint_mathbbR^nhatg(xi)fracsin(xie^ixicdot xdxi=(gast T)(x).
      $$
      Where $$T(x)=(hatT(xi))^vee=left[left(fracsin(xiright)^veeright]^wedge.$$



      For $n=1$ that is, in one dimension;



      I consider $frac12chi_[-t,t]=left(fracsin(xiright)^vee$ from the fact that $hatchi_[-t,t]=int_-t^t1cdot e^-ixcdotxidx$.



      1. My first problem is that I am failing to get an expression of D'Alembert solution

      $$u(x,t)=F(x+t)+ G(x-t).$$



      1. My second problem is that I want to see how the solution for $n=2$, that is, in $2$-dimension is obtained. Especially, on how to evaluate along the boundary of a circle.








      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Jul 31 at 16:41









      Davide Morgante

      1,654220




      1,654220









      asked Jul 31 at 16:20









      Sulayman

      1807




      1807

























          active

          oldest

          votes











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2868224%2fthe-dalembert-solution-for-an-n1-dimensional-wave-equation%23new-answer', 'question_page');

          );

          Post as a guest



































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes










           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2868224%2fthe-dalembert-solution-for-an-n1-dimensional-wave-equation%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What is the equation of a 3D cone with generalised tilt?

          Relationship between determinant of matrix and determinant of adjoint?

          Color the edges and diagonals of a regular polygon