The D'Alembert solution for an $n+1$ dimensional wave equation
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
I have been solving the wave equation in the upper half-space $mathbbR^n+1_+$ $$
D^2_ttu(x,t)=nabla^2u, quad u(x,0)=f(x), quad D_tu(x,0)=g(x), quad xin mathbbR^n, quad t>0
$$
using Fourier transform and obtained the following:
$$
hatu(xi,t)=hatf(xi)cosxi+
hatg(xi)fracsinxixi, quad xiin mathbbR^n, quad t>0.
$$
Hence, the inversion formula gives for $(x,t)in mathbbR^n+1_+$,
$$
u(x,t)=frac1(2pi)^nint_mathbbR^nhatf(xi)cos(e^ixicdot xdxi+
frac1(2pi)^nint_mathbbR^nhatg(xi)fracsin(xie^ixicdot xdxi=u_1+u_2.
$$
I consider first $$u_2=frac1(2pi)^nint_mathbbR^nhatg(xi)fracsin(xie^ixicdot xdxi=(gast T)(x).
$$
Where $$T(x)=(hatT(xi))^vee=left[left(fracsin(xiright)^veeright]^wedge.$$
For $n=1$ that is, in one dimension;
I consider $frac12chi_[-t,t]=left(fracsin(xiright)^vee$ from the fact that $hatchi_[-t,t]=int_-t^t1cdot e^-ixcdotxidx$.
- My first problem is that I am failing to get an expression of D'Alembert solution
$$u(x,t)=F(x+t)+ G(x-t).$$
- My second problem is that I want to see how the solution for $n=2$, that is, in $2$-dimension is obtained. Especially, on how to evaluate along the boundary of a circle.
fourier-analysis harmonic-analysis
add a comment |Â
up vote
0
down vote
favorite
I have been solving the wave equation in the upper half-space $mathbbR^n+1_+$ $$
D^2_ttu(x,t)=nabla^2u, quad u(x,0)=f(x), quad D_tu(x,0)=g(x), quad xin mathbbR^n, quad t>0
$$
using Fourier transform and obtained the following:
$$
hatu(xi,t)=hatf(xi)cosxi+
hatg(xi)fracsinxixi, quad xiin mathbbR^n, quad t>0.
$$
Hence, the inversion formula gives for $(x,t)in mathbbR^n+1_+$,
$$
u(x,t)=frac1(2pi)^nint_mathbbR^nhatf(xi)cos(e^ixicdot xdxi+
frac1(2pi)^nint_mathbbR^nhatg(xi)fracsin(xie^ixicdot xdxi=u_1+u_2.
$$
I consider first $$u_2=frac1(2pi)^nint_mathbbR^nhatg(xi)fracsin(xie^ixicdot xdxi=(gast T)(x).
$$
Where $$T(x)=(hatT(xi))^vee=left[left(fracsin(xiright)^veeright]^wedge.$$
For $n=1$ that is, in one dimension;
I consider $frac12chi_[-t,t]=left(fracsin(xiright)^vee$ from the fact that $hatchi_[-t,t]=int_-t^t1cdot e^-ixcdotxidx$.
- My first problem is that I am failing to get an expression of D'Alembert solution
$$u(x,t)=F(x+t)+ G(x-t).$$
- My second problem is that I want to see how the solution for $n=2$, that is, in $2$-dimension is obtained. Especially, on how to evaluate along the boundary of a circle.
fourier-analysis harmonic-analysis
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I have been solving the wave equation in the upper half-space $mathbbR^n+1_+$ $$
D^2_ttu(x,t)=nabla^2u, quad u(x,0)=f(x), quad D_tu(x,0)=g(x), quad xin mathbbR^n, quad t>0
$$
using Fourier transform and obtained the following:
$$
hatu(xi,t)=hatf(xi)cosxi+
hatg(xi)fracsinxixi, quad xiin mathbbR^n, quad t>0.
$$
Hence, the inversion formula gives for $(x,t)in mathbbR^n+1_+$,
$$
u(x,t)=frac1(2pi)^nint_mathbbR^nhatf(xi)cos(e^ixicdot xdxi+
frac1(2pi)^nint_mathbbR^nhatg(xi)fracsin(xie^ixicdot xdxi=u_1+u_2.
$$
I consider first $$u_2=frac1(2pi)^nint_mathbbR^nhatg(xi)fracsin(xie^ixicdot xdxi=(gast T)(x).
$$
Where $$T(x)=(hatT(xi))^vee=left[left(fracsin(xiright)^veeright]^wedge.$$
For $n=1$ that is, in one dimension;
I consider $frac12chi_[-t,t]=left(fracsin(xiright)^vee$ from the fact that $hatchi_[-t,t]=int_-t^t1cdot e^-ixcdotxidx$.
- My first problem is that I am failing to get an expression of D'Alembert solution
$$u(x,t)=F(x+t)+ G(x-t).$$
- My second problem is that I want to see how the solution for $n=2$, that is, in $2$-dimension is obtained. Especially, on how to evaluate along the boundary of a circle.
fourier-analysis harmonic-analysis
I have been solving the wave equation in the upper half-space $mathbbR^n+1_+$ $$
D^2_ttu(x,t)=nabla^2u, quad u(x,0)=f(x), quad D_tu(x,0)=g(x), quad xin mathbbR^n, quad t>0
$$
using Fourier transform and obtained the following:
$$
hatu(xi,t)=hatf(xi)cosxi+
hatg(xi)fracsinxixi, quad xiin mathbbR^n, quad t>0.
$$
Hence, the inversion formula gives for $(x,t)in mathbbR^n+1_+$,
$$
u(x,t)=frac1(2pi)^nint_mathbbR^nhatf(xi)cos(e^ixicdot xdxi+
frac1(2pi)^nint_mathbbR^nhatg(xi)fracsin(xie^ixicdot xdxi=u_1+u_2.
$$
I consider first $$u_2=frac1(2pi)^nint_mathbbR^nhatg(xi)fracsin(xie^ixicdot xdxi=(gast T)(x).
$$
Where $$T(x)=(hatT(xi))^vee=left[left(fracsin(xiright)^veeright]^wedge.$$
For $n=1$ that is, in one dimension;
I consider $frac12chi_[-t,t]=left(fracsin(xiright)^vee$ from the fact that $hatchi_[-t,t]=int_-t^t1cdot e^-ixcdotxidx$.
- My first problem is that I am failing to get an expression of D'Alembert solution
$$u(x,t)=F(x+t)+ G(x-t).$$
- My second problem is that I want to see how the solution for $n=2$, that is, in $2$-dimension is obtained. Especially, on how to evaluate along the boundary of a circle.
fourier-analysis harmonic-analysis
edited Jul 31 at 16:41
Davide Morgante
1,654220
1,654220
asked Jul 31 at 16:20
Sulayman
1807
1807
add a comment |Â
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2868224%2fthe-dalembert-solution-for-an-n1-dimensional-wave-equation%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password