Assume $int^a_b operatornametr(A(t)B(t))~dt=0$ for any $B$, where $A,B$ are $n times n$ matrices. Does this imply $A=0$?
Clash Royale CLAN TAG#URR8PPP
up vote
4
down vote
favorite
Assume $displaystyleint^a_b operatornametr(A(t)B(t))~dt=0$ for any $B$, where $A,B$ are $n times n$ matrices.
Does this imply $A=0$?
If this is not true, can we add some conditions for $A, B$ to make the proposition true? For example, add some conditions like $A$ is symmetric, $A$ is skew-symmetric, both $A~textand~B in SO(n)$, etc.
calculus real-analysis linear-algebra functional-analysis lie-groups
 |Â
show 4 more comments
up vote
4
down vote
favorite
Assume $displaystyleint^a_b operatornametr(A(t)B(t))~dt=0$ for any $B$, where $A,B$ are $n times n$ matrices.
Does this imply $A=0$?
If this is not true, can we add some conditions for $A, B$ to make the proposition true? For example, add some conditions like $A$ is symmetric, $A$ is skew-symmetric, both $A~textand~B in SO(n)$, etc.
calculus real-analysis linear-algebra functional-analysis lie-groups
$A$ and $B$ are matricial functions, aren't they?
– Gonzalo Benavides
Jul 27 at 22:14
Hint: Set $B(t)=A(t)^T$.
– Math Lover
Jul 27 at 22:17
1
@MathLover Rather, set $B(t) = A(t)^T$.
– mechanodroid
Jul 27 at 22:19
@mechanodroid Thanks.
– Math Lover
Jul 27 at 22:21
1
@DionelJaime A matrix whose coefficients are (sufficiently regular) functions of a parameter $t$, presumably.
– Clement C.
Jul 27 at 22:31
 |Â
show 4 more comments
up vote
4
down vote
favorite
up vote
4
down vote
favorite
Assume $displaystyleint^a_b operatornametr(A(t)B(t))~dt=0$ for any $B$, where $A,B$ are $n times n$ matrices.
Does this imply $A=0$?
If this is not true, can we add some conditions for $A, B$ to make the proposition true? For example, add some conditions like $A$ is symmetric, $A$ is skew-symmetric, both $A~textand~B in SO(n)$, etc.
calculus real-analysis linear-algebra functional-analysis lie-groups
Assume $displaystyleint^a_b operatornametr(A(t)B(t))~dt=0$ for any $B$, where $A,B$ are $n times n$ matrices.
Does this imply $A=0$?
If this is not true, can we add some conditions for $A, B$ to make the proposition true? For example, add some conditions like $A$ is symmetric, $A$ is skew-symmetric, both $A~textand~B in SO(n)$, etc.
calculus real-analysis linear-algebra functional-analysis lie-groups
edited Jul 27 at 23:11


Xander Henderson
13.1k83150
13.1k83150
asked Jul 27 at 22:13
XYZ
1038
1038
$A$ and $B$ are matricial functions, aren't they?
– Gonzalo Benavides
Jul 27 at 22:14
Hint: Set $B(t)=A(t)^T$.
– Math Lover
Jul 27 at 22:17
1
@MathLover Rather, set $B(t) = A(t)^T$.
– mechanodroid
Jul 27 at 22:19
@mechanodroid Thanks.
– Math Lover
Jul 27 at 22:21
1
@DionelJaime A matrix whose coefficients are (sufficiently regular) functions of a parameter $t$, presumably.
– Clement C.
Jul 27 at 22:31
 |Â
show 4 more comments
$A$ and $B$ are matricial functions, aren't they?
– Gonzalo Benavides
Jul 27 at 22:14
Hint: Set $B(t)=A(t)^T$.
– Math Lover
Jul 27 at 22:17
1
@MathLover Rather, set $B(t) = A(t)^T$.
– mechanodroid
Jul 27 at 22:19
@mechanodroid Thanks.
– Math Lover
Jul 27 at 22:21
1
@DionelJaime A matrix whose coefficients are (sufficiently regular) functions of a parameter $t$, presumably.
– Clement C.
Jul 27 at 22:31
$A$ and $B$ are matricial functions, aren't they?
– Gonzalo Benavides
Jul 27 at 22:14
$A$ and $B$ are matricial functions, aren't they?
– Gonzalo Benavides
Jul 27 at 22:14
Hint: Set $B(t)=A(t)^T$.
– Math Lover
Jul 27 at 22:17
Hint: Set $B(t)=A(t)^T$.
– Math Lover
Jul 27 at 22:17
1
1
@MathLover Rather, set $B(t) = A(t)^T$.
– mechanodroid
Jul 27 at 22:19
@MathLover Rather, set $B(t) = A(t)^T$.
– mechanodroid
Jul 27 at 22:19
@mechanodroid Thanks.
– Math Lover
Jul 27 at 22:21
@mechanodroid Thanks.
– Math Lover
Jul 27 at 22:21
1
1
@DionelJaime A matrix whose coefficients are (sufficiently regular) functions of a parameter $t$, presumably.
– Clement C.
Jul 27 at 22:31
@DionelJaime A matrix whose coefficients are (sufficiently regular) functions of a parameter $t$, presumably.
– Clement C.
Jul 27 at 22:31
 |Â
show 4 more comments
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
Following Math Lover's hint, consider $B(t)$ being $A(t)^top$. Then check that the integrand $texttr(A(t) A(t)^top)=sum_i sum_j A(t)_ij^2$ is nonnegative.
1
Or better yet $B=A^dagger$, so the argument works even for complex matrices.
– J.G.
Jul 27 at 22:23
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Following Math Lover's hint, consider $B(t)$ being $A(t)^top$. Then check that the integrand $texttr(A(t) A(t)^top)=sum_i sum_j A(t)_ij^2$ is nonnegative.
1
Or better yet $B=A^dagger$, so the argument works even for complex matrices.
– J.G.
Jul 27 at 22:23
add a comment |Â
up vote
1
down vote
accepted
Following Math Lover's hint, consider $B(t)$ being $A(t)^top$. Then check that the integrand $texttr(A(t) A(t)^top)=sum_i sum_j A(t)_ij^2$ is nonnegative.
1
Or better yet $B=A^dagger$, so the argument works even for complex matrices.
– J.G.
Jul 27 at 22:23
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Following Math Lover's hint, consider $B(t)$ being $A(t)^top$. Then check that the integrand $texttr(A(t) A(t)^top)=sum_i sum_j A(t)_ij^2$ is nonnegative.
Following Math Lover's hint, consider $B(t)$ being $A(t)^top$. Then check that the integrand $texttr(A(t) A(t)^top)=sum_i sum_j A(t)_ij^2$ is nonnegative.
answered Jul 27 at 22:20
angryavian
34.5k12874
34.5k12874
1
Or better yet $B=A^dagger$, so the argument works even for complex matrices.
– J.G.
Jul 27 at 22:23
add a comment |Â
1
Or better yet $B=A^dagger$, so the argument works even for complex matrices.
– J.G.
Jul 27 at 22:23
1
1
Or better yet $B=A^dagger$, so the argument works even for complex matrices.
– J.G.
Jul 27 at 22:23
Or better yet $B=A^dagger$, so the argument works even for complex matrices.
– J.G.
Jul 27 at 22:23
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2864804%2fassume-inta-b-operatornametratbtdt-0-for-any-b-where-a-b-are%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
$A$ and $B$ are matricial functions, aren't they?
– Gonzalo Benavides
Jul 27 at 22:14
Hint: Set $B(t)=A(t)^T$.
– Math Lover
Jul 27 at 22:17
1
@MathLover Rather, set $B(t) = A(t)^T$.
– mechanodroid
Jul 27 at 22:19
@mechanodroid Thanks.
– Math Lover
Jul 27 at 22:21
1
@DionelJaime A matrix whose coefficients are (sufficiently regular) functions of a parameter $t$, presumably.
– Clement C.
Jul 27 at 22:31