Find analytic solution: for what $n_0$, $forall n > n_0$ : $n cdot p ^n-1 leq delta$ holds?
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Suppose $p$ is a fixed number in $(0, 1)$ and $delta$ is a small positive number s.t. $ 0 < delta < p$.
What is $n_0$ such that for any $n > n_0$, the following holds:
$$
n cdot p ^n-1 leq delta
$$
real-analysis inequality approximation
add a comment |Â
up vote
0
down vote
favorite
Suppose $p$ is a fixed number in $(0, 1)$ and $delta$ is a small positive number s.t. $ 0 < delta < p$.
What is $n_0$ such that for any $n > n_0$, the following holds:
$$
n cdot p ^n-1 leq delta
$$
real-analysis inequality approximation
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Suppose $p$ is a fixed number in $(0, 1)$ and $delta$ is a small positive number s.t. $ 0 < delta < p$.
What is $n_0$ such that for any $n > n_0$, the following holds:
$$
n cdot p ^n-1 leq delta
$$
real-analysis inequality approximation
Suppose $p$ is a fixed number in $(0, 1)$ and $delta$ is a small positive number s.t. $ 0 < delta < p$.
What is $n_0$ such that for any $n > n_0$, the following holds:
$$
n cdot p ^n-1 leq delta
$$
real-analysis inequality approximation
asked Jul 26 at 13:41
Daniel
1,059921
1,059921
add a comment |Â
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
2
down vote
accepted
Set $p:= e^-y$, where $0 <y$, real
Now consider:
$n e^-y(n-1)=dfracne^y(n-1) =$
$dfracn1+ y(n-1)+ y^2(n-1)^2/2 +....$
$ lt dfrac2ny^2(n-1)^2 lt$
$(1/y^2)dfrac2n(n/2)^2= (8/y^2)(1/n).$
Let $epsilon >0$ be given.
Archimedean principle:
There is a $n_0$, positive integer with
$n_0 > (1/epsilon)(8/y^2).$
For $nge n_0$ we have
$ne^-y(n-1) lt (8/y^2)(1/n)le (8/y^2)(1/n_0) lt epsilon.$
Used: $(n-1)^2 >(n/2)^2$ , $n ge 3.$
add a comment |Â
up vote
1
down vote
Let $r=frac 1p-1.$ That is, $p=frac 11+r.$ We have $r>0.$
If $ngeq 4$ then by the Binomial Theorem we have $$frac 1p^n-1=(1+r)^n-1=1+r(n-1)+r^2frac (n-1)(n-2)2+...>$$ $$>r^2frac (n-1)(n-2)2$$ so we have $$frac 1np^n-1>r^2 frac (n-1)(n-2)2n=frac r^22(n-3+2/n)>frac r^2 2( n-3)$$ so we have $np^n-1< frac 2r^2(n-3) .$ And the rest is obvious.
I felt like giving an answer using only the most elementary means (not even Bernoulli's Inequality).
+1 for the simple solution.
â Paramanand Singh
Jul 27 at 3:49
add a comment |Â
up vote
0
down vote
$p,qin(0,1)$, $p=1-q$, (Pick $qin(0,1)$ so that this equality holds).
We get $delta geq p^n-1n=(1-q)^n-1ngeq(1-(n-1)q)n $ (using Bernouli`s inequality).
$delta geq n-n^2q-qn leftrightarrow n^2q+(q-1)n+deltageq0$. From here you can find the roots of the polynomial (Relative to $n$), take the bigger one ($n_0$), and since this is a parabola, the inequality holds for all $ngeq n_0$
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
Set $p:= e^-y$, where $0 <y$, real
Now consider:
$n e^-y(n-1)=dfracne^y(n-1) =$
$dfracn1+ y(n-1)+ y^2(n-1)^2/2 +....$
$ lt dfrac2ny^2(n-1)^2 lt$
$(1/y^2)dfrac2n(n/2)^2= (8/y^2)(1/n).$
Let $epsilon >0$ be given.
Archimedean principle:
There is a $n_0$, positive integer with
$n_0 > (1/epsilon)(8/y^2).$
For $nge n_0$ we have
$ne^-y(n-1) lt (8/y^2)(1/n)le (8/y^2)(1/n_0) lt epsilon.$
Used: $(n-1)^2 >(n/2)^2$ , $n ge 3.$
add a comment |Â
up vote
2
down vote
accepted
Set $p:= e^-y$, where $0 <y$, real
Now consider:
$n e^-y(n-1)=dfracne^y(n-1) =$
$dfracn1+ y(n-1)+ y^2(n-1)^2/2 +....$
$ lt dfrac2ny^2(n-1)^2 lt$
$(1/y^2)dfrac2n(n/2)^2= (8/y^2)(1/n).$
Let $epsilon >0$ be given.
Archimedean principle:
There is a $n_0$, positive integer with
$n_0 > (1/epsilon)(8/y^2).$
For $nge n_0$ we have
$ne^-y(n-1) lt (8/y^2)(1/n)le (8/y^2)(1/n_0) lt epsilon.$
Used: $(n-1)^2 >(n/2)^2$ , $n ge 3.$
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
Set $p:= e^-y$, where $0 <y$, real
Now consider:
$n e^-y(n-1)=dfracne^y(n-1) =$
$dfracn1+ y(n-1)+ y^2(n-1)^2/2 +....$
$ lt dfrac2ny^2(n-1)^2 lt$
$(1/y^2)dfrac2n(n/2)^2= (8/y^2)(1/n).$
Let $epsilon >0$ be given.
Archimedean principle:
There is a $n_0$, positive integer with
$n_0 > (1/epsilon)(8/y^2).$
For $nge n_0$ we have
$ne^-y(n-1) lt (8/y^2)(1/n)le (8/y^2)(1/n_0) lt epsilon.$
Used: $(n-1)^2 >(n/2)^2$ , $n ge 3.$
Set $p:= e^-y$, where $0 <y$, real
Now consider:
$n e^-y(n-1)=dfracne^y(n-1) =$
$dfracn1+ y(n-1)+ y^2(n-1)^2/2 +....$
$ lt dfrac2ny^2(n-1)^2 lt$
$(1/y^2)dfrac2n(n/2)^2= (8/y^2)(1/n).$
Let $epsilon >0$ be given.
Archimedean principle:
There is a $n_0$, positive integer with
$n_0 > (1/epsilon)(8/y^2).$
For $nge n_0$ we have
$ne^-y(n-1) lt (8/y^2)(1/n)le (8/y^2)(1/n_0) lt epsilon.$
Used: $(n-1)^2 >(n/2)^2$ , $n ge 3.$
edited Jul 27 at 7:07
answered Jul 26 at 14:25
Peter Szilas
7,8702617
7,8702617
add a comment |Â
add a comment |Â
up vote
1
down vote
Let $r=frac 1p-1.$ That is, $p=frac 11+r.$ We have $r>0.$
If $ngeq 4$ then by the Binomial Theorem we have $$frac 1p^n-1=(1+r)^n-1=1+r(n-1)+r^2frac (n-1)(n-2)2+...>$$ $$>r^2frac (n-1)(n-2)2$$ so we have $$frac 1np^n-1>r^2 frac (n-1)(n-2)2n=frac r^22(n-3+2/n)>frac r^2 2( n-3)$$ so we have $np^n-1< frac 2r^2(n-3) .$ And the rest is obvious.
I felt like giving an answer using only the most elementary means (not even Bernoulli's Inequality).
+1 for the simple solution.
â Paramanand Singh
Jul 27 at 3:49
add a comment |Â
up vote
1
down vote
Let $r=frac 1p-1.$ That is, $p=frac 11+r.$ We have $r>0.$
If $ngeq 4$ then by the Binomial Theorem we have $$frac 1p^n-1=(1+r)^n-1=1+r(n-1)+r^2frac (n-1)(n-2)2+...>$$ $$>r^2frac (n-1)(n-2)2$$ so we have $$frac 1np^n-1>r^2 frac (n-1)(n-2)2n=frac r^22(n-3+2/n)>frac r^2 2( n-3)$$ so we have $np^n-1< frac 2r^2(n-3) .$ And the rest is obvious.
I felt like giving an answer using only the most elementary means (not even Bernoulli's Inequality).
+1 for the simple solution.
â Paramanand Singh
Jul 27 at 3:49
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Let $r=frac 1p-1.$ That is, $p=frac 11+r.$ We have $r>0.$
If $ngeq 4$ then by the Binomial Theorem we have $$frac 1p^n-1=(1+r)^n-1=1+r(n-1)+r^2frac (n-1)(n-2)2+...>$$ $$>r^2frac (n-1)(n-2)2$$ so we have $$frac 1np^n-1>r^2 frac (n-1)(n-2)2n=frac r^22(n-3+2/n)>frac r^2 2( n-3)$$ so we have $np^n-1< frac 2r^2(n-3) .$ And the rest is obvious.
I felt like giving an answer using only the most elementary means (not even Bernoulli's Inequality).
Let $r=frac 1p-1.$ That is, $p=frac 11+r.$ We have $r>0.$
If $ngeq 4$ then by the Binomial Theorem we have $$frac 1p^n-1=(1+r)^n-1=1+r(n-1)+r^2frac (n-1)(n-2)2+...>$$ $$>r^2frac (n-1)(n-2)2$$ so we have $$frac 1np^n-1>r^2 frac (n-1)(n-2)2n=frac r^22(n-3+2/n)>frac r^2 2( n-3)$$ so we have $np^n-1< frac 2r^2(n-3) .$ And the rest is obvious.
I felt like giving an answer using only the most elementary means (not even Bernoulli's Inequality).
answered Jul 26 at 18:53
DanielWainfleet
31.5k31542
31.5k31542
+1 for the simple solution.
â Paramanand Singh
Jul 27 at 3:49
add a comment |Â
+1 for the simple solution.
â Paramanand Singh
Jul 27 at 3:49
+1 for the simple solution.
â Paramanand Singh
Jul 27 at 3:49
+1 for the simple solution.
â Paramanand Singh
Jul 27 at 3:49
add a comment |Â
up vote
0
down vote
$p,qin(0,1)$, $p=1-q$, (Pick $qin(0,1)$ so that this equality holds).
We get $delta geq p^n-1n=(1-q)^n-1ngeq(1-(n-1)q)n $ (using Bernouli`s inequality).
$delta geq n-n^2q-qn leftrightarrow n^2q+(q-1)n+deltageq0$. From here you can find the roots of the polynomial (Relative to $n$), take the bigger one ($n_0$), and since this is a parabola, the inequality holds for all $ngeq n_0$
add a comment |Â
up vote
0
down vote
$p,qin(0,1)$, $p=1-q$, (Pick $qin(0,1)$ so that this equality holds).
We get $delta geq p^n-1n=(1-q)^n-1ngeq(1-(n-1)q)n $ (using Bernouli`s inequality).
$delta geq n-n^2q-qn leftrightarrow n^2q+(q-1)n+deltageq0$. From here you can find the roots of the polynomial (Relative to $n$), take the bigger one ($n_0$), and since this is a parabola, the inequality holds for all $ngeq n_0$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
$p,qin(0,1)$, $p=1-q$, (Pick $qin(0,1)$ so that this equality holds).
We get $delta geq p^n-1n=(1-q)^n-1ngeq(1-(n-1)q)n $ (using Bernouli`s inequality).
$delta geq n-n^2q-qn leftrightarrow n^2q+(q-1)n+deltageq0$. From here you can find the roots of the polynomial (Relative to $n$), take the bigger one ($n_0$), and since this is a parabola, the inequality holds for all $ngeq n_0$
$p,qin(0,1)$, $p=1-q$, (Pick $qin(0,1)$ so that this equality holds).
We get $delta geq p^n-1n=(1-q)^n-1ngeq(1-(n-1)q)n $ (using Bernouli`s inequality).
$delta geq n-n^2q-qn leftrightarrow n^2q+(q-1)n+deltageq0$. From here you can find the roots of the polynomial (Relative to $n$), take the bigger one ($n_0$), and since this is a parabola, the inequality holds for all $ngeq n_0$
answered Jul 26 at 14:52
Sar
40410
40410
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2863409%2ffind-analytic-solution-for-what-n-0-forall-n-n-0-n-cdot-p-n-1-l%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password