But how can I calculate the coordinates of a point $Q$ wich lies on $frac13$ of line $PD$ with $P(2,3)$ and $D(4,-8)$?
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
To calculate the middle of a line you can just average the points: $x = dfracx_1 + x_22$ and $y = dfracy_1 + y_22$
But how can I calculate the coordinates of a point $Q$ wich lies on $frac13$ of line $PD$ with $P(2,3)$ and $D(4,-8)$?
The next technic does not work is this case:
analytic-geometry
add a comment |Â
up vote
1
down vote
favorite
To calculate the middle of a line you can just average the points: $x = dfracx_1 + x_22$ and $y = dfracy_1 + y_22$
But how can I calculate the coordinates of a point $Q$ wich lies on $frac13$ of line $PD$ with $P(2,3)$ and $D(4,-8)$?
The next technic does not work is this case:
analytic-geometry
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
To calculate the middle of a line you can just average the points: $x = dfracx_1 + x_22$ and $y = dfracy_1 + y_22$
But how can I calculate the coordinates of a point $Q$ wich lies on $frac13$ of line $PD$ with $P(2,3)$ and $D(4,-8)$?
The next technic does not work is this case:
analytic-geometry
To calculate the middle of a line you can just average the points: $x = dfracx_1 + x_22$ and $y = dfracy_1 + y_22$
But how can I calculate the coordinates of a point $Q$ wich lies on $frac13$ of line $PD$ with $P(2,3)$ and $D(4,-8)$?
The next technic does not work is this case:
analytic-geometry
edited Jul 26 at 14:43
mechanodroid
22.2k52041
22.2k52041
asked Jul 26 at 14:31
WinstonCherf
49816
49816
add a comment |Â
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
2
down vote
accepted
The section formula gives a formula for a point $Q$ between $P = (x_1, y_1)$ and $D = (x_2, y_2)$ such that $fracPQQD = fracmn$ as:
$$Q = left(fracmx_2 + nx_1m+n, fracmy_2 + ny_1m+nright)$$
so in our case we have $fracPQQD = frac12$ so
$$Q = left(frac1cdot 4 + 2cdot 21+2, frac1cdot (-8) + 2cdot 31+2right) = left(frac83, -frac23right)$$
The answer should be (8/3,-2/3)..
â WinstonCherf
Jul 26 at 15:01
1
@WinstonCherf True, if $PQ$ is $frac13$ of $PD$, then $fracPQQD = frac12$. Fixed now.
â mechanodroid
Jul 26 at 15:14
add a comment |Â
up vote
1
down vote
It's simply, in terms of vectors:
$$Q=P+frac13overrightarrowPD$$
or in terms of barycentres:
$$Q=frac23P+frac13D.$$
add a comment |Â
up vote
0
down vote
$$x=x_1+lambda(x_2-x_1)ï¼Â~y=y_1+lambda(y_2-y_1).$$
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
The section formula gives a formula for a point $Q$ between $P = (x_1, y_1)$ and $D = (x_2, y_2)$ such that $fracPQQD = fracmn$ as:
$$Q = left(fracmx_2 + nx_1m+n, fracmy_2 + ny_1m+nright)$$
so in our case we have $fracPQQD = frac12$ so
$$Q = left(frac1cdot 4 + 2cdot 21+2, frac1cdot (-8) + 2cdot 31+2right) = left(frac83, -frac23right)$$
The answer should be (8/3,-2/3)..
â WinstonCherf
Jul 26 at 15:01
1
@WinstonCherf True, if $PQ$ is $frac13$ of $PD$, then $fracPQQD = frac12$. Fixed now.
â mechanodroid
Jul 26 at 15:14
add a comment |Â
up vote
2
down vote
accepted
The section formula gives a formula for a point $Q$ between $P = (x_1, y_1)$ and $D = (x_2, y_2)$ such that $fracPQQD = fracmn$ as:
$$Q = left(fracmx_2 + nx_1m+n, fracmy_2 + ny_1m+nright)$$
so in our case we have $fracPQQD = frac12$ so
$$Q = left(frac1cdot 4 + 2cdot 21+2, frac1cdot (-8) + 2cdot 31+2right) = left(frac83, -frac23right)$$
The answer should be (8/3,-2/3)..
â WinstonCherf
Jul 26 at 15:01
1
@WinstonCherf True, if $PQ$ is $frac13$ of $PD$, then $fracPQQD = frac12$. Fixed now.
â mechanodroid
Jul 26 at 15:14
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
The section formula gives a formula for a point $Q$ between $P = (x_1, y_1)$ and $D = (x_2, y_2)$ such that $fracPQQD = fracmn$ as:
$$Q = left(fracmx_2 + nx_1m+n, fracmy_2 + ny_1m+nright)$$
so in our case we have $fracPQQD = frac12$ so
$$Q = left(frac1cdot 4 + 2cdot 21+2, frac1cdot (-8) + 2cdot 31+2right) = left(frac83, -frac23right)$$
The section formula gives a formula for a point $Q$ between $P = (x_1, y_1)$ and $D = (x_2, y_2)$ such that $fracPQQD = fracmn$ as:
$$Q = left(fracmx_2 + nx_1m+n, fracmy_2 + ny_1m+nright)$$
so in our case we have $fracPQQD = frac12$ so
$$Q = left(frac1cdot 4 + 2cdot 21+2, frac1cdot (-8) + 2cdot 31+2right) = left(frac83, -frac23right)$$
edited Jul 26 at 15:13
answered Jul 26 at 14:42
mechanodroid
22.2k52041
22.2k52041
The answer should be (8/3,-2/3)..
â WinstonCherf
Jul 26 at 15:01
1
@WinstonCherf True, if $PQ$ is $frac13$ of $PD$, then $fracPQQD = frac12$. Fixed now.
â mechanodroid
Jul 26 at 15:14
add a comment |Â
The answer should be (8/3,-2/3)..
â WinstonCherf
Jul 26 at 15:01
1
@WinstonCherf True, if $PQ$ is $frac13$ of $PD$, then $fracPQQD = frac12$. Fixed now.
â mechanodroid
Jul 26 at 15:14
The answer should be (8/3,-2/3)..
â WinstonCherf
Jul 26 at 15:01
The answer should be (8/3,-2/3)..
â WinstonCherf
Jul 26 at 15:01
1
1
@WinstonCherf True, if $PQ$ is $frac13$ of $PD$, then $fracPQQD = frac12$. Fixed now.
â mechanodroid
Jul 26 at 15:14
@WinstonCherf True, if $PQ$ is $frac13$ of $PD$, then $fracPQQD = frac12$. Fixed now.
â mechanodroid
Jul 26 at 15:14
add a comment |Â
up vote
1
down vote
It's simply, in terms of vectors:
$$Q=P+frac13overrightarrowPD$$
or in terms of barycentres:
$$Q=frac23P+frac13D.$$
add a comment |Â
up vote
1
down vote
It's simply, in terms of vectors:
$$Q=P+frac13overrightarrowPD$$
or in terms of barycentres:
$$Q=frac23P+frac13D.$$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
It's simply, in terms of vectors:
$$Q=P+frac13overrightarrowPD$$
or in terms of barycentres:
$$Q=frac23P+frac13D.$$
It's simply, in terms of vectors:
$$Q=P+frac13overrightarrowPD$$
or in terms of barycentres:
$$Q=frac23P+frac13D.$$
answered Jul 26 at 14:52
Bernard
110k635102
110k635102
add a comment |Â
add a comment |Â
up vote
0
down vote
$$x=x_1+lambda(x_2-x_1)ï¼Â~y=y_1+lambda(y_2-y_1).$$
add a comment |Â
up vote
0
down vote
$$x=x_1+lambda(x_2-x_1)ï¼Â~y=y_1+lambda(y_2-y_1).$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
$$x=x_1+lambda(x_2-x_1)ï¼Â~y=y_1+lambda(y_2-y_1).$$
$$x=x_1+lambda(x_2-x_1)ï¼Â~y=y_1+lambda(y_2-y_1).$$
answered Jul 26 at 14:42
mengdie1982
2,825216
2,825216
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2863457%2fbut-how-can-i-calculate-the-coordinates-of-a-point-q-wich-lies-on-frac13-of%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password