How do we simplify a multiple sum that involves determinants?
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
Let $d in 2mathbb N$ be an even positive integer, let $pin mathbb N$ be another positive integer and let $T$ be a parameter.
Let $vecq := left( q_xi right)_xi=0^d/2-1 in mathbb N^(d/2)$.
Consider a following multiple sum:
begineqnarray
&&mathcal S_d,p(T):=sumlimits_j=1^d sumlimits_2 le q_0 le cdots le q_d/2-1 le d frac12^ cdot nu(vecq)
left|
beginarrayr
left( (fracT-d-12 + delta_2 xi+1,j p+q_xi)^(eta-q_xi) 1_q_xi le etaright)_eta=1^d\
left(2^-eta+1 (T-d+1)^(p(delta_2xi+1,j+delta_2xi+2,j)+eta+q_xi-3)right)_eta=1^d\
endarray
right|_xi=0^d/2-1
endeqnarray
where $nu(vecq) := prod_eta=2^d p_eta!$
where
beginequation
vecq:= left(
underbrace2,cdots,2_p_2,
underbrace3,cdots,3_p_3,
cdots,
underbraced,cdots,d_p_d
right)
endequation
Note that the term in the multiple sum is a determinant of a $dtimes d$ matrix whose entries are polynomials in $T$.
We stumbled across this sum when solving question Spectral densities of finite dimensional sample covariance matrices .
Now by using Mathematica we have discovered the following pattern:
beginequation
mathcal S_d,p(T)= sumlimits_xi=0^(2d-5) vee 0 (T-d+1)^(p+xi) cdot P_d,xi^(fracd^24-1-xi)(T)
endequation
where $P_d,xi^(fracd^24-1-xi)(T)$ is a polynomial in $T$ of order $(fracd^24-1-xi)$.
Here the polynomials in question read:
begineqnarray
P_2,0^(0)(T) &=& frac12\
hline\
P_4,0^(3)(T) &=& frac1128 (T-3) left(2 p^2 T-2 p^2-p T+3 p+2 T^2-6 T+4right)\
P_4,1^(2)(T) &=& frac1128 left(-4 p^2 T+8 p^2-3 p T+5 p-2 T^2+10 T-12right)\
P_4,2^(1)(T) &=& frac164 left(p^2+2 p-T+3right)\
P_4,3^(0)(T) &=& frac164\
hline\
vdots
endeqnarray
Now my question will be how do we find a closed form expression for the polynomials in question for arbitrary $d$.
Update: Note that we also have:
begineqnarray
mathcal S_d,0(T) &=&
d cdot 2^-1-fracd^24prodlimits_j=0^d/2-1 (T-d+1)^(d-2 j-2) (frac12)^(j) j!\
&=& d cdot 2^-1-fracd^24 left(prodlimits_j=0^d/2-1 (frac12)^(j)j!right) cdot prodlimits_k=2^d-1 (T-k)^lfloor frack2rfloor
endeqnarray
Below is a piece of Mathematica code that "proves" the above relationship.
d = 2 RandomInteger[1, 5]; T =.; p = 0;
mat = Flatten[
Table[Table[q[xi], xi, 0, d/2 - 1], (-1)^(d/2) 1/2^
Sum[q[xi], xi,
0, (d)/2 -
1] 1/(Times @@ (Tally[Table[q[xi], xi, 0, d/2 - 1]][[All,
2]]!))
Sum[Det[
Riffle[
Table[Pochhammer[(T - d - 1)/2 + KD[2 xi + 1, j] p +
q[xi], (eta - q[xi])] If[q[xi] <= eta, 1, 0], xi, 0,
d/2 - 1, eta, 1, d],
Table[1/2^(eta - 1)
Pochhammer[T - d + 1,
p (KD[2 xi + 1, j] + KD[2 xi + 2, j]) + eta - 1 + q[xi] -
2], xi, 0, d/2 - 1, eta, 1, d]]
], j, 1, d]
, Evaluate[
Sequence @@
Join[,
Table[q[xi], If[xi == 0, 2, q[xi - 1] + 1], d, xi, 0,
d/2 - 1]]]], d/2 - 1];
(Total[mat[[All, 2]]] - (d Product[
Pochhammer[T - d + 1, d - 2 j - 2] Pochhammer[1/2, j] (j)!, j,
0, d/2 - 1] 2^(-1 - d^2/4))) // Simplify
MatrixForm[mat]
Again, my question is how do we go about proving this relationship rigorously.
Update 2:
By simplifying the relationship in Update 1 we end up with a following different relationship:
begineqnarray
&&sumlimits_2 le q_0 < cdots < q_d/2-1 le d (-1)^d^2/2
prodlimits_j=-d+1^-2 left[
frac(T+j)^sumlimits_xi=0^d/2-1 1_-2 xi-1 le j le q_xi-d-2 cdot 1_q_xige d-2 xi
(T+j)^sumlimits_xi=0^d/2-1 1_q_xi-d-1 le j le -2xi-2 cdot 1_q_xile d-2 xi
right] cdot left|
beginarrayr
left(prodlimits_j=q_xi^q_xi+eta-2(T-d-1+1 cdot j)right)_eta=1^d\
left(prodlimits_j=q_xi^eta-1 (T-d-1+2 cdot j)1_q_xi le etaright)_eta=1^d
endarray
right|_xi=0^d/2-1
=\
&&2^fracd^24-1 cdot prodlimits_xi=0^d/2-1 (frac12)^(xi) xi!
endeqnarray
For example if we take $d=4$ the left hand side reads:
which is independent of $T$ and reads $-4$.
Likewise for $d=6$ the left hand side reads:
which again is independent of $T$ and reads $192$.
Now, again how do we prove that relationship rigorously?
summation determinant
add a comment |Â
up vote
2
down vote
favorite
Let $d in 2mathbb N$ be an even positive integer, let $pin mathbb N$ be another positive integer and let $T$ be a parameter.
Let $vecq := left( q_xi right)_xi=0^d/2-1 in mathbb N^(d/2)$.
Consider a following multiple sum:
begineqnarray
&&mathcal S_d,p(T):=sumlimits_j=1^d sumlimits_2 le q_0 le cdots le q_d/2-1 le d frac12^ cdot nu(vecq)
left|
beginarrayr
left( (fracT-d-12 + delta_2 xi+1,j p+q_xi)^(eta-q_xi) 1_q_xi le etaright)_eta=1^d\
left(2^-eta+1 (T-d+1)^(p(delta_2xi+1,j+delta_2xi+2,j)+eta+q_xi-3)right)_eta=1^d\
endarray
right|_xi=0^d/2-1
endeqnarray
where $nu(vecq) := prod_eta=2^d p_eta!$
where
beginequation
vecq:= left(
underbrace2,cdots,2_p_2,
underbrace3,cdots,3_p_3,
cdots,
underbraced,cdots,d_p_d
right)
endequation
Note that the term in the multiple sum is a determinant of a $dtimes d$ matrix whose entries are polynomials in $T$.
We stumbled across this sum when solving question Spectral densities of finite dimensional sample covariance matrices .
Now by using Mathematica we have discovered the following pattern:
beginequation
mathcal S_d,p(T)= sumlimits_xi=0^(2d-5) vee 0 (T-d+1)^(p+xi) cdot P_d,xi^(fracd^24-1-xi)(T)
endequation
where $P_d,xi^(fracd^24-1-xi)(T)$ is a polynomial in $T$ of order $(fracd^24-1-xi)$.
Here the polynomials in question read:
begineqnarray
P_2,0^(0)(T) &=& frac12\
hline\
P_4,0^(3)(T) &=& frac1128 (T-3) left(2 p^2 T-2 p^2-p T+3 p+2 T^2-6 T+4right)\
P_4,1^(2)(T) &=& frac1128 left(-4 p^2 T+8 p^2-3 p T+5 p-2 T^2+10 T-12right)\
P_4,2^(1)(T) &=& frac164 left(p^2+2 p-T+3right)\
P_4,3^(0)(T) &=& frac164\
hline\
vdots
endeqnarray
Now my question will be how do we find a closed form expression for the polynomials in question for arbitrary $d$.
Update: Note that we also have:
begineqnarray
mathcal S_d,0(T) &=&
d cdot 2^-1-fracd^24prodlimits_j=0^d/2-1 (T-d+1)^(d-2 j-2) (frac12)^(j) j!\
&=& d cdot 2^-1-fracd^24 left(prodlimits_j=0^d/2-1 (frac12)^(j)j!right) cdot prodlimits_k=2^d-1 (T-k)^lfloor frack2rfloor
endeqnarray
Below is a piece of Mathematica code that "proves" the above relationship.
d = 2 RandomInteger[1, 5]; T =.; p = 0;
mat = Flatten[
Table[Table[q[xi], xi, 0, d/2 - 1], (-1)^(d/2) 1/2^
Sum[q[xi], xi,
0, (d)/2 -
1] 1/(Times @@ (Tally[Table[q[xi], xi, 0, d/2 - 1]][[All,
2]]!))
Sum[Det[
Riffle[
Table[Pochhammer[(T - d - 1)/2 + KD[2 xi + 1, j] p +
q[xi], (eta - q[xi])] If[q[xi] <= eta, 1, 0], xi, 0,
d/2 - 1, eta, 1, d],
Table[1/2^(eta - 1)
Pochhammer[T - d + 1,
p (KD[2 xi + 1, j] + KD[2 xi + 2, j]) + eta - 1 + q[xi] -
2], xi, 0, d/2 - 1, eta, 1, d]]
], j, 1, d]
, Evaluate[
Sequence @@
Join[,
Table[q[xi], If[xi == 0, 2, q[xi - 1] + 1], d, xi, 0,
d/2 - 1]]]], d/2 - 1];
(Total[mat[[All, 2]]] - (d Product[
Pochhammer[T - d + 1, d - 2 j - 2] Pochhammer[1/2, j] (j)!, j,
0, d/2 - 1] 2^(-1 - d^2/4))) // Simplify
MatrixForm[mat]
Again, my question is how do we go about proving this relationship rigorously.
Update 2:
By simplifying the relationship in Update 1 we end up with a following different relationship:
begineqnarray
&&sumlimits_2 le q_0 < cdots < q_d/2-1 le d (-1)^d^2/2
prodlimits_j=-d+1^-2 left[
frac(T+j)^sumlimits_xi=0^d/2-1 1_-2 xi-1 le j le q_xi-d-2 cdot 1_q_xige d-2 xi
(T+j)^sumlimits_xi=0^d/2-1 1_q_xi-d-1 le j le -2xi-2 cdot 1_q_xile d-2 xi
right] cdot left|
beginarrayr
left(prodlimits_j=q_xi^q_xi+eta-2(T-d-1+1 cdot j)right)_eta=1^d\
left(prodlimits_j=q_xi^eta-1 (T-d-1+2 cdot j)1_q_xi le etaright)_eta=1^d
endarray
right|_xi=0^d/2-1
=\
&&2^fracd^24-1 cdot prodlimits_xi=0^d/2-1 (frac12)^(xi) xi!
endeqnarray
For example if we take $d=4$ the left hand side reads:
which is independent of $T$ and reads $-4$.
Likewise for $d=6$ the left hand side reads:
which again is independent of $T$ and reads $192$.
Now, again how do we prove that relationship rigorously?
summation determinant
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Let $d in 2mathbb N$ be an even positive integer, let $pin mathbb N$ be another positive integer and let $T$ be a parameter.
Let $vecq := left( q_xi right)_xi=0^d/2-1 in mathbb N^(d/2)$.
Consider a following multiple sum:
begineqnarray
&&mathcal S_d,p(T):=sumlimits_j=1^d sumlimits_2 le q_0 le cdots le q_d/2-1 le d frac12^ cdot nu(vecq)
left|
beginarrayr
left( (fracT-d-12 + delta_2 xi+1,j p+q_xi)^(eta-q_xi) 1_q_xi le etaright)_eta=1^d\
left(2^-eta+1 (T-d+1)^(p(delta_2xi+1,j+delta_2xi+2,j)+eta+q_xi-3)right)_eta=1^d\
endarray
right|_xi=0^d/2-1
endeqnarray
where $nu(vecq) := prod_eta=2^d p_eta!$
where
beginequation
vecq:= left(
underbrace2,cdots,2_p_2,
underbrace3,cdots,3_p_3,
cdots,
underbraced,cdots,d_p_d
right)
endequation
Note that the term in the multiple sum is a determinant of a $dtimes d$ matrix whose entries are polynomials in $T$.
We stumbled across this sum when solving question Spectral densities of finite dimensional sample covariance matrices .
Now by using Mathematica we have discovered the following pattern:
beginequation
mathcal S_d,p(T)= sumlimits_xi=0^(2d-5) vee 0 (T-d+1)^(p+xi) cdot P_d,xi^(fracd^24-1-xi)(T)
endequation
where $P_d,xi^(fracd^24-1-xi)(T)$ is a polynomial in $T$ of order $(fracd^24-1-xi)$.
Here the polynomials in question read:
begineqnarray
P_2,0^(0)(T) &=& frac12\
hline\
P_4,0^(3)(T) &=& frac1128 (T-3) left(2 p^2 T-2 p^2-p T+3 p+2 T^2-6 T+4right)\
P_4,1^(2)(T) &=& frac1128 left(-4 p^2 T+8 p^2-3 p T+5 p-2 T^2+10 T-12right)\
P_4,2^(1)(T) &=& frac164 left(p^2+2 p-T+3right)\
P_4,3^(0)(T) &=& frac164\
hline\
vdots
endeqnarray
Now my question will be how do we find a closed form expression for the polynomials in question for arbitrary $d$.
Update: Note that we also have:
begineqnarray
mathcal S_d,0(T) &=&
d cdot 2^-1-fracd^24prodlimits_j=0^d/2-1 (T-d+1)^(d-2 j-2) (frac12)^(j) j!\
&=& d cdot 2^-1-fracd^24 left(prodlimits_j=0^d/2-1 (frac12)^(j)j!right) cdot prodlimits_k=2^d-1 (T-k)^lfloor frack2rfloor
endeqnarray
Below is a piece of Mathematica code that "proves" the above relationship.
d = 2 RandomInteger[1, 5]; T =.; p = 0;
mat = Flatten[
Table[Table[q[xi], xi, 0, d/2 - 1], (-1)^(d/2) 1/2^
Sum[q[xi], xi,
0, (d)/2 -
1] 1/(Times @@ (Tally[Table[q[xi], xi, 0, d/2 - 1]][[All,
2]]!))
Sum[Det[
Riffle[
Table[Pochhammer[(T - d - 1)/2 + KD[2 xi + 1, j] p +
q[xi], (eta - q[xi])] If[q[xi] <= eta, 1, 0], xi, 0,
d/2 - 1, eta, 1, d],
Table[1/2^(eta - 1)
Pochhammer[T - d + 1,
p (KD[2 xi + 1, j] + KD[2 xi + 2, j]) + eta - 1 + q[xi] -
2], xi, 0, d/2 - 1, eta, 1, d]]
], j, 1, d]
, Evaluate[
Sequence @@
Join[,
Table[q[xi], If[xi == 0, 2, q[xi - 1] + 1], d, xi, 0,
d/2 - 1]]]], d/2 - 1];
(Total[mat[[All, 2]]] - (d Product[
Pochhammer[T - d + 1, d - 2 j - 2] Pochhammer[1/2, j] (j)!, j,
0, d/2 - 1] 2^(-1 - d^2/4))) // Simplify
MatrixForm[mat]
Again, my question is how do we go about proving this relationship rigorously.
Update 2:
By simplifying the relationship in Update 1 we end up with a following different relationship:
begineqnarray
&&sumlimits_2 le q_0 < cdots < q_d/2-1 le d (-1)^d^2/2
prodlimits_j=-d+1^-2 left[
frac(T+j)^sumlimits_xi=0^d/2-1 1_-2 xi-1 le j le q_xi-d-2 cdot 1_q_xige d-2 xi
(T+j)^sumlimits_xi=0^d/2-1 1_q_xi-d-1 le j le -2xi-2 cdot 1_q_xile d-2 xi
right] cdot left|
beginarrayr
left(prodlimits_j=q_xi^q_xi+eta-2(T-d-1+1 cdot j)right)_eta=1^d\
left(prodlimits_j=q_xi^eta-1 (T-d-1+2 cdot j)1_q_xi le etaright)_eta=1^d
endarray
right|_xi=0^d/2-1
=\
&&2^fracd^24-1 cdot prodlimits_xi=0^d/2-1 (frac12)^(xi) xi!
endeqnarray
For example if we take $d=4$ the left hand side reads:
which is independent of $T$ and reads $-4$.
Likewise for $d=6$ the left hand side reads:
which again is independent of $T$ and reads $192$.
Now, again how do we prove that relationship rigorously?
summation determinant
Let $d in 2mathbb N$ be an even positive integer, let $pin mathbb N$ be another positive integer and let $T$ be a parameter.
Let $vecq := left( q_xi right)_xi=0^d/2-1 in mathbb N^(d/2)$.
Consider a following multiple sum:
begineqnarray
&&mathcal S_d,p(T):=sumlimits_j=1^d sumlimits_2 le q_0 le cdots le q_d/2-1 le d frac12^ cdot nu(vecq)
left|
beginarrayr
left( (fracT-d-12 + delta_2 xi+1,j p+q_xi)^(eta-q_xi) 1_q_xi le etaright)_eta=1^d\
left(2^-eta+1 (T-d+1)^(p(delta_2xi+1,j+delta_2xi+2,j)+eta+q_xi-3)right)_eta=1^d\
endarray
right|_xi=0^d/2-1
endeqnarray
where $nu(vecq) := prod_eta=2^d p_eta!$
where
beginequation
vecq:= left(
underbrace2,cdots,2_p_2,
underbrace3,cdots,3_p_3,
cdots,
underbraced,cdots,d_p_d
right)
endequation
Note that the term in the multiple sum is a determinant of a $dtimes d$ matrix whose entries are polynomials in $T$.
We stumbled across this sum when solving question Spectral densities of finite dimensional sample covariance matrices .
Now by using Mathematica we have discovered the following pattern:
beginequation
mathcal S_d,p(T)= sumlimits_xi=0^(2d-5) vee 0 (T-d+1)^(p+xi) cdot P_d,xi^(fracd^24-1-xi)(T)
endequation
where $P_d,xi^(fracd^24-1-xi)(T)$ is a polynomial in $T$ of order $(fracd^24-1-xi)$.
Here the polynomials in question read:
begineqnarray
P_2,0^(0)(T) &=& frac12\
hline\
P_4,0^(3)(T) &=& frac1128 (T-3) left(2 p^2 T-2 p^2-p T+3 p+2 T^2-6 T+4right)\
P_4,1^(2)(T) &=& frac1128 left(-4 p^2 T+8 p^2-3 p T+5 p-2 T^2+10 T-12right)\
P_4,2^(1)(T) &=& frac164 left(p^2+2 p-T+3right)\
P_4,3^(0)(T) &=& frac164\
hline\
vdots
endeqnarray
Now my question will be how do we find a closed form expression for the polynomials in question for arbitrary $d$.
Update: Note that we also have:
begineqnarray
mathcal S_d,0(T) &=&
d cdot 2^-1-fracd^24prodlimits_j=0^d/2-1 (T-d+1)^(d-2 j-2) (frac12)^(j) j!\
&=& d cdot 2^-1-fracd^24 left(prodlimits_j=0^d/2-1 (frac12)^(j)j!right) cdot prodlimits_k=2^d-1 (T-k)^lfloor frack2rfloor
endeqnarray
Below is a piece of Mathematica code that "proves" the above relationship.
d = 2 RandomInteger[1, 5]; T =.; p = 0;
mat = Flatten[
Table[Table[q[xi], xi, 0, d/2 - 1], (-1)^(d/2) 1/2^
Sum[q[xi], xi,
0, (d)/2 -
1] 1/(Times @@ (Tally[Table[q[xi], xi, 0, d/2 - 1]][[All,
2]]!))
Sum[Det[
Riffle[
Table[Pochhammer[(T - d - 1)/2 + KD[2 xi + 1, j] p +
q[xi], (eta - q[xi])] If[q[xi] <= eta, 1, 0], xi, 0,
d/2 - 1, eta, 1, d],
Table[1/2^(eta - 1)
Pochhammer[T - d + 1,
p (KD[2 xi + 1, j] + KD[2 xi + 2, j]) + eta - 1 + q[xi] -
2], xi, 0, d/2 - 1, eta, 1, d]]
], j, 1, d]
, Evaluate[
Sequence @@
Join[,
Table[q[xi], If[xi == 0, 2, q[xi - 1] + 1], d, xi, 0,
d/2 - 1]]]], d/2 - 1];
(Total[mat[[All, 2]]] - (d Product[
Pochhammer[T - d + 1, d - 2 j - 2] Pochhammer[1/2, j] (j)!, j,
0, d/2 - 1] 2^(-1 - d^2/4))) // Simplify
MatrixForm[mat]
Again, my question is how do we go about proving this relationship rigorously.
Update 2:
By simplifying the relationship in Update 1 we end up with a following different relationship:
begineqnarray
&&sumlimits_2 le q_0 < cdots < q_d/2-1 le d (-1)^d^2/2
prodlimits_j=-d+1^-2 left[
frac(T+j)^sumlimits_xi=0^d/2-1 1_-2 xi-1 le j le q_xi-d-2 cdot 1_q_xige d-2 xi
(T+j)^sumlimits_xi=0^d/2-1 1_q_xi-d-1 le j le -2xi-2 cdot 1_q_xile d-2 xi
right] cdot left|
beginarrayr
left(prodlimits_j=q_xi^q_xi+eta-2(T-d-1+1 cdot j)right)_eta=1^d\
left(prodlimits_j=q_xi^eta-1 (T-d-1+2 cdot j)1_q_xi le etaright)_eta=1^d
endarray
right|_xi=0^d/2-1
=\
&&2^fracd^24-1 cdot prodlimits_xi=0^d/2-1 (frac12)^(xi) xi!
endeqnarray
For example if we take $d=4$ the left hand side reads:
which is independent of $T$ and reads $-4$.
Likewise for $d=6$ the left hand side reads:
which again is independent of $T$ and reads $192$.
Now, again how do we prove that relationship rigorously?
summation determinant
edited 2 days ago
asked Jul 26 at 16:17
Przemo
3,916726
3,916726
add a comment |Â
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2863562%2fhow-do-we-simplify-a-multiple-sum-that-involves-determinants%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password