How to prove Wielandt minimax formula?
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
The statements are as follows:
Let $1leqslant i_1<i_2<cdots<i_kleqslant n$ be integers. Define a partial flag to be a nested collection $V_1subset V_2cdotssubset V_k$ of subspaces of $mathbbC^n$ s.t. $dim(V_j)=i_j$ for all j between 1 and k. Define the Schubert variety $X(V_1,...,V_k)$ to be the collection of all k-dimensional subspaces W s.t. $dim(Wcap V_j)geqslant j$. Show that for any Hermitian matrix A,
$$lambda_i_1+...+lambda_i_k=sup_V_1,...,V_k inf_Win X(V_1,...,V_k)tr(A|_W)$$.
Where $lambda_i_j$ means the $i_j$ th eigenvalue of A, from large to small. The trace in the right formula stands for the partial trace of A on W.
I have proofed that the LHS is no bigger than the RHS using induction on k, but I do not know how to prove the other side.
linear-algebra eigenvalues-eigenvectors random-matrices
add a comment |Â
up vote
0
down vote
favorite
The statements are as follows:
Let $1leqslant i_1<i_2<cdots<i_kleqslant n$ be integers. Define a partial flag to be a nested collection $V_1subset V_2cdotssubset V_k$ of subspaces of $mathbbC^n$ s.t. $dim(V_j)=i_j$ for all j between 1 and k. Define the Schubert variety $X(V_1,...,V_k)$ to be the collection of all k-dimensional subspaces W s.t. $dim(Wcap V_j)geqslant j$. Show that for any Hermitian matrix A,
$$lambda_i_1+...+lambda_i_k=sup_V_1,...,V_k inf_Win X(V_1,...,V_k)tr(A|_W)$$.
Where $lambda_i_j$ means the $i_j$ th eigenvalue of A, from large to small. The trace in the right formula stands for the partial trace of A on W.
I have proofed that the LHS is no bigger than the RHS using induction on k, but I do not know how to prove the other side.
linear-algebra eigenvalues-eigenvectors random-matrices
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
The statements are as follows:
Let $1leqslant i_1<i_2<cdots<i_kleqslant n$ be integers. Define a partial flag to be a nested collection $V_1subset V_2cdotssubset V_k$ of subspaces of $mathbbC^n$ s.t. $dim(V_j)=i_j$ for all j between 1 and k. Define the Schubert variety $X(V_1,...,V_k)$ to be the collection of all k-dimensional subspaces W s.t. $dim(Wcap V_j)geqslant j$. Show that for any Hermitian matrix A,
$$lambda_i_1+...+lambda_i_k=sup_V_1,...,V_k inf_Win X(V_1,...,V_k)tr(A|_W)$$.
Where $lambda_i_j$ means the $i_j$ th eigenvalue of A, from large to small. The trace in the right formula stands for the partial trace of A on W.
I have proofed that the LHS is no bigger than the RHS using induction on k, but I do not know how to prove the other side.
linear-algebra eigenvalues-eigenvectors random-matrices
The statements are as follows:
Let $1leqslant i_1<i_2<cdots<i_kleqslant n$ be integers. Define a partial flag to be a nested collection $V_1subset V_2cdotssubset V_k$ of subspaces of $mathbbC^n$ s.t. $dim(V_j)=i_j$ for all j between 1 and k. Define the Schubert variety $X(V_1,...,V_k)$ to be the collection of all k-dimensional subspaces W s.t. $dim(Wcap V_j)geqslant j$. Show that for any Hermitian matrix A,
$$lambda_i_1+...+lambda_i_k=sup_V_1,...,V_k inf_Win X(V_1,...,V_k)tr(A|_W)$$.
Where $lambda_i_j$ means the $i_j$ th eigenvalue of A, from large to small. The trace in the right formula stands for the partial trace of A on W.
I have proofed that the LHS is no bigger than the RHS using induction on k, but I do not know how to prove the other side.
linear-algebra eigenvalues-eigenvectors random-matrices
edited Jul 27 at 0:35
asked Jul 26 at 16:25
user579758
11
11
add a comment |Â
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2863568%2fhow-to-prove-wielandt-minimax-formula%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password