Power series expansion involving Lambert-W function
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
Need to power series expand this term:
$ -frace2z Wleft(frac-2ze^2 right) left( log left( - frace2z W left( frac-2ze^2right) right) -1 right)$
I tried expanding this with Wolfram but it doesn't give me Higher Order Terms. Can anyone with Maple/Mathematica help out with this? I'm working on doing this by hand but it's gonna be tedious from the looks of it. Any suggestions welcome!!
sequences-and-series power-series taylor-expansion lambert-w
add a comment |Â
up vote
2
down vote
favorite
Need to power series expand this term:
$ -frace2z Wleft(frac-2ze^2 right) left( log left( - frace2z W left( frac-2ze^2right) right) -1 right)$
I tried expanding this with Wolfram but it doesn't give me Higher Order Terms. Can anyone with Maple/Mathematica help out with this? I'm working on doing this by hand but it's gonna be tedious from the looks of it. Any suggestions welcome!!
sequences-and-series power-series taylor-expansion lambert-w
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Need to power series expand this term:
$ -frace2z Wleft(frac-2ze^2 right) left( log left( - frace2z W left( frac-2ze^2right) right) -1 right)$
I tried expanding this with Wolfram but it doesn't give me Higher Order Terms. Can anyone with Maple/Mathematica help out with this? I'm working on doing this by hand but it's gonna be tedious from the looks of it. Any suggestions welcome!!
sequences-and-series power-series taylor-expansion lambert-w
Need to power series expand this term:
$ -frace2z Wleft(frac-2ze^2 right) left( log left( - frace2z W left( frac-2ze^2right) right) -1 right)$
I tried expanding this with Wolfram but it doesn't give me Higher Order Terms. Can anyone with Maple/Mathematica help out with this? I'm working on doing this by hand but it's gonna be tedious from the looks of it. Any suggestions welcome!!
sequences-and-series power-series taylor-expansion lambert-w
edited Jul 26 at 19:22
Xoque55
2,65531328
2,65531328
asked Jul 26 at 19:10
anik faisal
154
154
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
0
down vote
accepted
Use the MATHEMATICA commands
f = -E/(2 z) ProductLog[-2 z/E^2] (Log [-E/(2 z) ProductLog[-2 z/E^2]] - 1)
Series[f, z, 1, 10]//N
and you will obtain
$$
f(z)=-0.880194-0.22445 (z-1.)-0.153651 (z-1.)^2-0.164248 (z-1.)^3-0.224172 (z-1.)^4-0.355448 (z-1.)^5-0.622729 (z-1.)^6-1.17077 (z-1.)^7-2.31929
(z-1.)^8-4.78304 (z-1.)^9-10.1829 (z-1.)^10+Oleft((z-1.)^11right)
$$
or if you prefer the lenghty form (only four therms)
$$
f(z) = frac12 e Wleft(-frac2e^2right) left(Wleft(-frac2e^2right)+2right)-frac12 left(e Wleft(-frac2e^2right)^2right)
(z-1)+frace Wleft(-frac2e^2right)^3 (z-1)^22 Wleft(-frac2e^2right)+2-fracleft(e Wleft(-frac2e^2right)^4 left(3
Wleft(-frac2e^2right)+4right)right) (z-1)^36 left(Wleft(-frac2e^2right)+1right)^3+frace Wleft(-frac2e^2right)^5
left(2 Wleft(-frac2e^2right) left(6 Wleft(-frac2e^2right)+17right)+25right) (z-1)^424
left(Wleft(-frac2e^2right)+1right)^5+Oleft((z-1)^5right)
$$
etc.
You can also use the fact
$$
f(z) = y(z)(ln y(z) -1)
$$
with
$$
y(z) = -frace Wleft(-frac2 ze^2right)2 z
$$
and
$$
y_0 = y(1) = -frac12 e Wleft(-frac2e^2right)
$$
and then find the expansion for $y$. This can be done with MATHEMATICA or with bare hand.
thanks so much! this expansion is about z=0, I also need to expand it about z=1. Could you help out with that?
â anik faisal
Jul 26 at 20:07
@anikfaisal OK. Now the expansion near $z=1$ To avoid length formulations, use the command//N
â Cesareo
Jul 26 at 20:15
this is so very helpful!! thanks again
â anik faisal
Jul 26 at 20:21
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
Use the MATHEMATICA commands
f = -E/(2 z) ProductLog[-2 z/E^2] (Log [-E/(2 z) ProductLog[-2 z/E^2]] - 1)
Series[f, z, 1, 10]//N
and you will obtain
$$
f(z)=-0.880194-0.22445 (z-1.)-0.153651 (z-1.)^2-0.164248 (z-1.)^3-0.224172 (z-1.)^4-0.355448 (z-1.)^5-0.622729 (z-1.)^6-1.17077 (z-1.)^7-2.31929
(z-1.)^8-4.78304 (z-1.)^9-10.1829 (z-1.)^10+Oleft((z-1.)^11right)
$$
or if you prefer the lenghty form (only four therms)
$$
f(z) = frac12 e Wleft(-frac2e^2right) left(Wleft(-frac2e^2right)+2right)-frac12 left(e Wleft(-frac2e^2right)^2right)
(z-1)+frace Wleft(-frac2e^2right)^3 (z-1)^22 Wleft(-frac2e^2right)+2-fracleft(e Wleft(-frac2e^2right)^4 left(3
Wleft(-frac2e^2right)+4right)right) (z-1)^36 left(Wleft(-frac2e^2right)+1right)^3+frace Wleft(-frac2e^2right)^5
left(2 Wleft(-frac2e^2right) left(6 Wleft(-frac2e^2right)+17right)+25right) (z-1)^424
left(Wleft(-frac2e^2right)+1right)^5+Oleft((z-1)^5right)
$$
etc.
You can also use the fact
$$
f(z) = y(z)(ln y(z) -1)
$$
with
$$
y(z) = -frace Wleft(-frac2 ze^2right)2 z
$$
and
$$
y_0 = y(1) = -frac12 e Wleft(-frac2e^2right)
$$
and then find the expansion for $y$. This can be done with MATHEMATICA or with bare hand.
thanks so much! this expansion is about z=0, I also need to expand it about z=1. Could you help out with that?
â anik faisal
Jul 26 at 20:07
@anikfaisal OK. Now the expansion near $z=1$ To avoid length formulations, use the command//N
â Cesareo
Jul 26 at 20:15
this is so very helpful!! thanks again
â anik faisal
Jul 26 at 20:21
add a comment |Â
up vote
0
down vote
accepted
Use the MATHEMATICA commands
f = -E/(2 z) ProductLog[-2 z/E^2] (Log [-E/(2 z) ProductLog[-2 z/E^2]] - 1)
Series[f, z, 1, 10]//N
and you will obtain
$$
f(z)=-0.880194-0.22445 (z-1.)-0.153651 (z-1.)^2-0.164248 (z-1.)^3-0.224172 (z-1.)^4-0.355448 (z-1.)^5-0.622729 (z-1.)^6-1.17077 (z-1.)^7-2.31929
(z-1.)^8-4.78304 (z-1.)^9-10.1829 (z-1.)^10+Oleft((z-1.)^11right)
$$
or if you prefer the lenghty form (only four therms)
$$
f(z) = frac12 e Wleft(-frac2e^2right) left(Wleft(-frac2e^2right)+2right)-frac12 left(e Wleft(-frac2e^2right)^2right)
(z-1)+frace Wleft(-frac2e^2right)^3 (z-1)^22 Wleft(-frac2e^2right)+2-fracleft(e Wleft(-frac2e^2right)^4 left(3
Wleft(-frac2e^2right)+4right)right) (z-1)^36 left(Wleft(-frac2e^2right)+1right)^3+frace Wleft(-frac2e^2right)^5
left(2 Wleft(-frac2e^2right) left(6 Wleft(-frac2e^2right)+17right)+25right) (z-1)^424
left(Wleft(-frac2e^2right)+1right)^5+Oleft((z-1)^5right)
$$
etc.
You can also use the fact
$$
f(z) = y(z)(ln y(z) -1)
$$
with
$$
y(z) = -frace Wleft(-frac2 ze^2right)2 z
$$
and
$$
y_0 = y(1) = -frac12 e Wleft(-frac2e^2right)
$$
and then find the expansion for $y$. This can be done with MATHEMATICA or with bare hand.
thanks so much! this expansion is about z=0, I also need to expand it about z=1. Could you help out with that?
â anik faisal
Jul 26 at 20:07
@anikfaisal OK. Now the expansion near $z=1$ To avoid length formulations, use the command//N
â Cesareo
Jul 26 at 20:15
this is so very helpful!! thanks again
â anik faisal
Jul 26 at 20:21
add a comment |Â
up vote
0
down vote
accepted
up vote
0
down vote
accepted
Use the MATHEMATICA commands
f = -E/(2 z) ProductLog[-2 z/E^2] (Log [-E/(2 z) ProductLog[-2 z/E^2]] - 1)
Series[f, z, 1, 10]//N
and you will obtain
$$
f(z)=-0.880194-0.22445 (z-1.)-0.153651 (z-1.)^2-0.164248 (z-1.)^3-0.224172 (z-1.)^4-0.355448 (z-1.)^5-0.622729 (z-1.)^6-1.17077 (z-1.)^7-2.31929
(z-1.)^8-4.78304 (z-1.)^9-10.1829 (z-1.)^10+Oleft((z-1.)^11right)
$$
or if you prefer the lenghty form (only four therms)
$$
f(z) = frac12 e Wleft(-frac2e^2right) left(Wleft(-frac2e^2right)+2right)-frac12 left(e Wleft(-frac2e^2right)^2right)
(z-1)+frace Wleft(-frac2e^2right)^3 (z-1)^22 Wleft(-frac2e^2right)+2-fracleft(e Wleft(-frac2e^2right)^4 left(3
Wleft(-frac2e^2right)+4right)right) (z-1)^36 left(Wleft(-frac2e^2right)+1right)^3+frace Wleft(-frac2e^2right)^5
left(2 Wleft(-frac2e^2right) left(6 Wleft(-frac2e^2right)+17right)+25right) (z-1)^424
left(Wleft(-frac2e^2right)+1right)^5+Oleft((z-1)^5right)
$$
etc.
You can also use the fact
$$
f(z) = y(z)(ln y(z) -1)
$$
with
$$
y(z) = -frace Wleft(-frac2 ze^2right)2 z
$$
and
$$
y_0 = y(1) = -frac12 e Wleft(-frac2e^2right)
$$
and then find the expansion for $y$. This can be done with MATHEMATICA or with bare hand.
Use the MATHEMATICA commands
f = -E/(2 z) ProductLog[-2 z/E^2] (Log [-E/(2 z) ProductLog[-2 z/E^2]] - 1)
Series[f, z, 1, 10]//N
and you will obtain
$$
f(z)=-0.880194-0.22445 (z-1.)-0.153651 (z-1.)^2-0.164248 (z-1.)^3-0.224172 (z-1.)^4-0.355448 (z-1.)^5-0.622729 (z-1.)^6-1.17077 (z-1.)^7-2.31929
(z-1.)^8-4.78304 (z-1.)^9-10.1829 (z-1.)^10+Oleft((z-1.)^11right)
$$
or if you prefer the lenghty form (only four therms)
$$
f(z) = frac12 e Wleft(-frac2e^2right) left(Wleft(-frac2e^2right)+2right)-frac12 left(e Wleft(-frac2e^2right)^2right)
(z-1)+frace Wleft(-frac2e^2right)^3 (z-1)^22 Wleft(-frac2e^2right)+2-fracleft(e Wleft(-frac2e^2right)^4 left(3
Wleft(-frac2e^2right)+4right)right) (z-1)^36 left(Wleft(-frac2e^2right)+1right)^3+frace Wleft(-frac2e^2right)^5
left(2 Wleft(-frac2e^2right) left(6 Wleft(-frac2e^2right)+17right)+25right) (z-1)^424
left(Wleft(-frac2e^2right)+1right)^5+Oleft((z-1)^5right)
$$
etc.
You can also use the fact
$$
f(z) = y(z)(ln y(z) -1)
$$
with
$$
y(z) = -frace Wleft(-frac2 ze^2right)2 z
$$
and
$$
y_0 = y(1) = -frac12 e Wleft(-frac2e^2right)
$$
and then find the expansion for $y$. This can be done with MATHEMATICA or with bare hand.
edited Jul 26 at 20:28
answered Jul 26 at 20:03
Cesareo
5,5912412
5,5912412
thanks so much! this expansion is about z=0, I also need to expand it about z=1. Could you help out with that?
â anik faisal
Jul 26 at 20:07
@anikfaisal OK. Now the expansion near $z=1$ To avoid length formulations, use the command//N
â Cesareo
Jul 26 at 20:15
this is so very helpful!! thanks again
â anik faisal
Jul 26 at 20:21
add a comment |Â
thanks so much! this expansion is about z=0, I also need to expand it about z=1. Could you help out with that?
â anik faisal
Jul 26 at 20:07
@anikfaisal OK. Now the expansion near $z=1$ To avoid length formulations, use the command//N
â Cesareo
Jul 26 at 20:15
this is so very helpful!! thanks again
â anik faisal
Jul 26 at 20:21
thanks so much! this expansion is about z=0, I also need to expand it about z=1. Could you help out with that?
â anik faisal
Jul 26 at 20:07
thanks so much! this expansion is about z=0, I also need to expand it about z=1. Could you help out with that?
â anik faisal
Jul 26 at 20:07
@anikfaisal OK. Now the expansion near $z=1$ To avoid length formulations, use the command
//N
â Cesareo
Jul 26 at 20:15
@anikfaisal OK. Now the expansion near $z=1$ To avoid length formulations, use the command
//N
â Cesareo
Jul 26 at 20:15
this is so very helpful!! thanks again
â anik faisal
Jul 26 at 20:21
this is so very helpful!! thanks again
â anik faisal
Jul 26 at 20:21
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2863713%2fpower-series-expansion-involving-lambert-w-function%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password