Power series expansion involving Lambert-W function

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite












Need to power series expand this term:



$ -frace2z Wleft(frac-2ze^2 right) left( log left( - frace2z W left( frac-2ze^2right) right) -1 right)$



I tried expanding this with Wolfram but it doesn't give me Higher Order Terms. Can anyone with Maple/Mathematica help out with this? I'm working on doing this by hand but it's gonna be tedious from the looks of it. Any suggestions welcome!!







share|cite|improve this question

























    up vote
    2
    down vote

    favorite












    Need to power series expand this term:



    $ -frace2z Wleft(frac-2ze^2 right) left( log left( - frace2z W left( frac-2ze^2right) right) -1 right)$



    I tried expanding this with Wolfram but it doesn't give me Higher Order Terms. Can anyone with Maple/Mathematica help out with this? I'm working on doing this by hand but it's gonna be tedious from the looks of it. Any suggestions welcome!!







    share|cite|improve this question























      up vote
      2
      down vote

      favorite









      up vote
      2
      down vote

      favorite











      Need to power series expand this term:



      $ -frace2z Wleft(frac-2ze^2 right) left( log left( - frace2z W left( frac-2ze^2right) right) -1 right)$



      I tried expanding this with Wolfram but it doesn't give me Higher Order Terms. Can anyone with Maple/Mathematica help out with this? I'm working on doing this by hand but it's gonna be tedious from the looks of it. Any suggestions welcome!!







      share|cite|improve this question













      Need to power series expand this term:



      $ -frace2z Wleft(frac-2ze^2 right) left( log left( - frace2z W left( frac-2ze^2right) right) -1 right)$



      I tried expanding this with Wolfram but it doesn't give me Higher Order Terms. Can anyone with Maple/Mathematica help out with this? I'm working on doing this by hand but it's gonna be tedious from the looks of it. Any suggestions welcome!!









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Jul 26 at 19:22









      Xoque55

      2,65531328




      2,65531328









      asked Jul 26 at 19:10









      anik faisal

      154




      154




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          0
          down vote



          accepted










          Use the MATHEMATICA commands



          f = -E/(2 z) ProductLog[-2 z/E^2] (Log [-E/(2 z) ProductLog[-2 z/E^2]] - 1)
          Series[f, z, 1, 10]//N



          and you will obtain



          $$
          f(z)=-0.880194-0.22445 (z-1.)-0.153651 (z-1.)^2-0.164248 (z-1.)^3-0.224172 (z-1.)^4-0.355448 (z-1.)^5-0.622729 (z-1.)^6-1.17077 (z-1.)^7-2.31929
          (z-1.)^8-4.78304 (z-1.)^9-10.1829 (z-1.)^10+Oleft((z-1.)^11right)
          $$



          or if you prefer the lenghty form (only four therms)



          $$
          f(z) = frac12 e Wleft(-frac2e^2right) left(Wleft(-frac2e^2right)+2right)-frac12 left(e Wleft(-frac2e^2right)^2right)
          (z-1)+frace Wleft(-frac2e^2right)^3 (z-1)^22 Wleft(-frac2e^2right)+2-fracleft(e Wleft(-frac2e^2right)^4 left(3
          Wleft(-frac2e^2right)+4right)right) (z-1)^36 left(Wleft(-frac2e^2right)+1right)^3+frace Wleft(-frac2e^2right)^5
          left(2 Wleft(-frac2e^2right) left(6 Wleft(-frac2e^2right)+17right)+25right) (z-1)^424
          left(Wleft(-frac2e^2right)+1right)^5+Oleft((z-1)^5right)
          $$



          etc.



          You can also use the fact



          $$
          f(z) = y(z)(ln y(z) -1)
          $$



          with



          $$
          y(z) = -frace Wleft(-frac2 ze^2right)2 z
          $$



          and



          $$
          y_0 = y(1) = -frac12 e Wleft(-frac2e^2right)
          $$



          and then find the expansion for $y$. This can be done with MATHEMATICA or with bare hand.






          share|cite|improve this answer























          • thanks so much! this expansion is about z=0, I also need to expand it about z=1. Could you help out with that?
            – anik faisal
            Jul 26 at 20:07










          • @anikfaisal OK. Now the expansion near $z=1$ To avoid length formulations, use the command //N
            – Cesareo
            Jul 26 at 20:15










          • this is so very helpful!! thanks again
            – anik faisal
            Jul 26 at 20:21










          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2863713%2fpower-series-expansion-involving-lambert-w-function%23new-answer', 'question_page');

          );

          Post as a guest






























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          0
          down vote



          accepted










          Use the MATHEMATICA commands



          f = -E/(2 z) ProductLog[-2 z/E^2] (Log [-E/(2 z) ProductLog[-2 z/E^2]] - 1)
          Series[f, z, 1, 10]//N



          and you will obtain



          $$
          f(z)=-0.880194-0.22445 (z-1.)-0.153651 (z-1.)^2-0.164248 (z-1.)^3-0.224172 (z-1.)^4-0.355448 (z-1.)^5-0.622729 (z-1.)^6-1.17077 (z-1.)^7-2.31929
          (z-1.)^8-4.78304 (z-1.)^9-10.1829 (z-1.)^10+Oleft((z-1.)^11right)
          $$



          or if you prefer the lenghty form (only four therms)



          $$
          f(z) = frac12 e Wleft(-frac2e^2right) left(Wleft(-frac2e^2right)+2right)-frac12 left(e Wleft(-frac2e^2right)^2right)
          (z-1)+frace Wleft(-frac2e^2right)^3 (z-1)^22 Wleft(-frac2e^2right)+2-fracleft(e Wleft(-frac2e^2right)^4 left(3
          Wleft(-frac2e^2right)+4right)right) (z-1)^36 left(Wleft(-frac2e^2right)+1right)^3+frace Wleft(-frac2e^2right)^5
          left(2 Wleft(-frac2e^2right) left(6 Wleft(-frac2e^2right)+17right)+25right) (z-1)^424
          left(Wleft(-frac2e^2right)+1right)^5+Oleft((z-1)^5right)
          $$



          etc.



          You can also use the fact



          $$
          f(z) = y(z)(ln y(z) -1)
          $$



          with



          $$
          y(z) = -frace Wleft(-frac2 ze^2right)2 z
          $$



          and



          $$
          y_0 = y(1) = -frac12 e Wleft(-frac2e^2right)
          $$



          and then find the expansion for $y$. This can be done with MATHEMATICA or with bare hand.






          share|cite|improve this answer























          • thanks so much! this expansion is about z=0, I also need to expand it about z=1. Could you help out with that?
            – anik faisal
            Jul 26 at 20:07










          • @anikfaisal OK. Now the expansion near $z=1$ To avoid length formulations, use the command //N
            – Cesareo
            Jul 26 at 20:15










          • this is so very helpful!! thanks again
            – anik faisal
            Jul 26 at 20:21














          up vote
          0
          down vote



          accepted










          Use the MATHEMATICA commands



          f = -E/(2 z) ProductLog[-2 z/E^2] (Log [-E/(2 z) ProductLog[-2 z/E^2]] - 1)
          Series[f, z, 1, 10]//N



          and you will obtain



          $$
          f(z)=-0.880194-0.22445 (z-1.)-0.153651 (z-1.)^2-0.164248 (z-1.)^3-0.224172 (z-1.)^4-0.355448 (z-1.)^5-0.622729 (z-1.)^6-1.17077 (z-1.)^7-2.31929
          (z-1.)^8-4.78304 (z-1.)^9-10.1829 (z-1.)^10+Oleft((z-1.)^11right)
          $$



          or if you prefer the lenghty form (only four therms)



          $$
          f(z) = frac12 e Wleft(-frac2e^2right) left(Wleft(-frac2e^2right)+2right)-frac12 left(e Wleft(-frac2e^2right)^2right)
          (z-1)+frace Wleft(-frac2e^2right)^3 (z-1)^22 Wleft(-frac2e^2right)+2-fracleft(e Wleft(-frac2e^2right)^4 left(3
          Wleft(-frac2e^2right)+4right)right) (z-1)^36 left(Wleft(-frac2e^2right)+1right)^3+frace Wleft(-frac2e^2right)^5
          left(2 Wleft(-frac2e^2right) left(6 Wleft(-frac2e^2right)+17right)+25right) (z-1)^424
          left(Wleft(-frac2e^2right)+1right)^5+Oleft((z-1)^5right)
          $$



          etc.



          You can also use the fact



          $$
          f(z) = y(z)(ln y(z) -1)
          $$



          with



          $$
          y(z) = -frace Wleft(-frac2 ze^2right)2 z
          $$



          and



          $$
          y_0 = y(1) = -frac12 e Wleft(-frac2e^2right)
          $$



          and then find the expansion for $y$. This can be done with MATHEMATICA or with bare hand.






          share|cite|improve this answer























          • thanks so much! this expansion is about z=0, I also need to expand it about z=1. Could you help out with that?
            – anik faisal
            Jul 26 at 20:07










          • @anikfaisal OK. Now the expansion near $z=1$ To avoid length formulations, use the command //N
            – Cesareo
            Jul 26 at 20:15










          • this is so very helpful!! thanks again
            – anik faisal
            Jul 26 at 20:21












          up vote
          0
          down vote



          accepted







          up vote
          0
          down vote



          accepted






          Use the MATHEMATICA commands



          f = -E/(2 z) ProductLog[-2 z/E^2] (Log [-E/(2 z) ProductLog[-2 z/E^2]] - 1)
          Series[f, z, 1, 10]//N



          and you will obtain



          $$
          f(z)=-0.880194-0.22445 (z-1.)-0.153651 (z-1.)^2-0.164248 (z-1.)^3-0.224172 (z-1.)^4-0.355448 (z-1.)^5-0.622729 (z-1.)^6-1.17077 (z-1.)^7-2.31929
          (z-1.)^8-4.78304 (z-1.)^9-10.1829 (z-1.)^10+Oleft((z-1.)^11right)
          $$



          or if you prefer the lenghty form (only four therms)



          $$
          f(z) = frac12 e Wleft(-frac2e^2right) left(Wleft(-frac2e^2right)+2right)-frac12 left(e Wleft(-frac2e^2right)^2right)
          (z-1)+frace Wleft(-frac2e^2right)^3 (z-1)^22 Wleft(-frac2e^2right)+2-fracleft(e Wleft(-frac2e^2right)^4 left(3
          Wleft(-frac2e^2right)+4right)right) (z-1)^36 left(Wleft(-frac2e^2right)+1right)^3+frace Wleft(-frac2e^2right)^5
          left(2 Wleft(-frac2e^2right) left(6 Wleft(-frac2e^2right)+17right)+25right) (z-1)^424
          left(Wleft(-frac2e^2right)+1right)^5+Oleft((z-1)^5right)
          $$



          etc.



          You can also use the fact



          $$
          f(z) = y(z)(ln y(z) -1)
          $$



          with



          $$
          y(z) = -frace Wleft(-frac2 ze^2right)2 z
          $$



          and



          $$
          y_0 = y(1) = -frac12 e Wleft(-frac2e^2right)
          $$



          and then find the expansion for $y$. This can be done with MATHEMATICA or with bare hand.






          share|cite|improve this answer















          Use the MATHEMATICA commands



          f = -E/(2 z) ProductLog[-2 z/E^2] (Log [-E/(2 z) ProductLog[-2 z/E^2]] - 1)
          Series[f, z, 1, 10]//N



          and you will obtain



          $$
          f(z)=-0.880194-0.22445 (z-1.)-0.153651 (z-1.)^2-0.164248 (z-1.)^3-0.224172 (z-1.)^4-0.355448 (z-1.)^5-0.622729 (z-1.)^6-1.17077 (z-1.)^7-2.31929
          (z-1.)^8-4.78304 (z-1.)^9-10.1829 (z-1.)^10+Oleft((z-1.)^11right)
          $$



          or if you prefer the lenghty form (only four therms)



          $$
          f(z) = frac12 e Wleft(-frac2e^2right) left(Wleft(-frac2e^2right)+2right)-frac12 left(e Wleft(-frac2e^2right)^2right)
          (z-1)+frace Wleft(-frac2e^2right)^3 (z-1)^22 Wleft(-frac2e^2right)+2-fracleft(e Wleft(-frac2e^2right)^4 left(3
          Wleft(-frac2e^2right)+4right)right) (z-1)^36 left(Wleft(-frac2e^2right)+1right)^3+frace Wleft(-frac2e^2right)^5
          left(2 Wleft(-frac2e^2right) left(6 Wleft(-frac2e^2right)+17right)+25right) (z-1)^424
          left(Wleft(-frac2e^2right)+1right)^5+Oleft((z-1)^5right)
          $$



          etc.



          You can also use the fact



          $$
          f(z) = y(z)(ln y(z) -1)
          $$



          with



          $$
          y(z) = -frace Wleft(-frac2 ze^2right)2 z
          $$



          and



          $$
          y_0 = y(1) = -frac12 e Wleft(-frac2e^2right)
          $$



          and then find the expansion for $y$. This can be done with MATHEMATICA or with bare hand.







          share|cite|improve this answer















          share|cite|improve this answer



          share|cite|improve this answer








          edited Jul 26 at 20:28


























          answered Jul 26 at 20:03









          Cesareo

          5,5912412




          5,5912412











          • thanks so much! this expansion is about z=0, I also need to expand it about z=1. Could you help out with that?
            – anik faisal
            Jul 26 at 20:07










          • @anikfaisal OK. Now the expansion near $z=1$ To avoid length formulations, use the command //N
            – Cesareo
            Jul 26 at 20:15










          • this is so very helpful!! thanks again
            – anik faisal
            Jul 26 at 20:21
















          • thanks so much! this expansion is about z=0, I also need to expand it about z=1. Could you help out with that?
            – anik faisal
            Jul 26 at 20:07










          • @anikfaisal OK. Now the expansion near $z=1$ To avoid length formulations, use the command //N
            – Cesareo
            Jul 26 at 20:15










          • this is so very helpful!! thanks again
            – anik faisal
            Jul 26 at 20:21















          thanks so much! this expansion is about z=0, I also need to expand it about z=1. Could you help out with that?
          – anik faisal
          Jul 26 at 20:07




          thanks so much! this expansion is about z=0, I also need to expand it about z=1. Could you help out with that?
          – anik faisal
          Jul 26 at 20:07












          @anikfaisal OK. Now the expansion near $z=1$ To avoid length formulations, use the command //N
          – Cesareo
          Jul 26 at 20:15




          @anikfaisal OK. Now the expansion near $z=1$ To avoid length formulations, use the command //N
          – Cesareo
          Jul 26 at 20:15












          this is so very helpful!! thanks again
          – anik faisal
          Jul 26 at 20:21




          this is so very helpful!! thanks again
          – anik faisal
          Jul 26 at 20:21












           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2863713%2fpower-series-expansion-involving-lambert-w-function%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What is the equation of a 3D cone with generalised tilt?

          Color the edges and diagonals of a regular polygon

          Relationship between determinant of matrix and determinant of adjoint?