If $lambda$ is a characteristic root of a non-singular matrix $A$, then prove that $det(A)/lambda$ is a characteristic root of $Adj A$.

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Let $A$ be a $ntimes n$ matrix. Then the characteristic equation is $mathrmdet(A-lambda×I)=0$, with possibly characteristic roots of $A$ $lambda_1,dots,lambda_n$. Let $A$ be regular, i.e. $mathrmdet(A)neq0$. Now $mathrmAdj(A)=mathrmdet(A)mathrmInv(A)$. I don't know how to find its characteristic roots.







share|cite|improve this question





















  • $detleft(det(A)A^-1-fracdet(A)lambdaIright)=det(A)det(A^-1-frac1lambdaI)=det(A)det(A^-1)det(lambda I-A)=(-1)^ndet(A)det(A^-1)det(A-lambda I)=0$. The last equality being because $det(A-lambda I)=0$. The assumption of $A$ invertible allows to know that $lambda neq 0$ and that $A^-1$ exists.
    – JessicaMcRae
    Aug 1 at 11:07















up vote
0
down vote

favorite












Let $A$ be a $ntimes n$ matrix. Then the characteristic equation is $mathrmdet(A-lambda×I)=0$, with possibly characteristic roots of $A$ $lambda_1,dots,lambda_n$. Let $A$ be regular, i.e. $mathrmdet(A)neq0$. Now $mathrmAdj(A)=mathrmdet(A)mathrmInv(A)$. I don't know how to find its characteristic roots.







share|cite|improve this question





















  • $detleft(det(A)A^-1-fracdet(A)lambdaIright)=det(A)det(A^-1-frac1lambdaI)=det(A)det(A^-1)det(lambda I-A)=(-1)^ndet(A)det(A^-1)det(A-lambda I)=0$. The last equality being because $det(A-lambda I)=0$. The assumption of $A$ invertible allows to know that $lambda neq 0$ and that $A^-1$ exists.
    – JessicaMcRae
    Aug 1 at 11:07













up vote
0
down vote

favorite









up vote
0
down vote

favorite











Let $A$ be a $ntimes n$ matrix. Then the characteristic equation is $mathrmdet(A-lambda×I)=0$, with possibly characteristic roots of $A$ $lambda_1,dots,lambda_n$. Let $A$ be regular, i.e. $mathrmdet(A)neq0$. Now $mathrmAdj(A)=mathrmdet(A)mathrmInv(A)$. I don't know how to find its characteristic roots.







share|cite|improve this question













Let $A$ be a $ntimes n$ matrix. Then the characteristic equation is $mathrmdet(A-lambda×I)=0$, with possibly characteristic roots of $A$ $lambda_1,dots,lambda_n$. Let $A$ be regular, i.e. $mathrmdet(A)neq0$. Now $mathrmAdj(A)=mathrmdet(A)mathrmInv(A)$. I don't know how to find its characteristic roots.









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Aug 1 at 11:11









zzuussee

1,152419




1,152419









asked Aug 1 at 10:56









kanchan b

23




23











  • $detleft(det(A)A^-1-fracdet(A)lambdaIright)=det(A)det(A^-1-frac1lambdaI)=det(A)det(A^-1)det(lambda I-A)=(-1)^ndet(A)det(A^-1)det(A-lambda I)=0$. The last equality being because $det(A-lambda I)=0$. The assumption of $A$ invertible allows to know that $lambda neq 0$ and that $A^-1$ exists.
    – JessicaMcRae
    Aug 1 at 11:07

















  • $detleft(det(A)A^-1-fracdet(A)lambdaIright)=det(A)det(A^-1-frac1lambdaI)=det(A)det(A^-1)det(lambda I-A)=(-1)^ndet(A)det(A^-1)det(A-lambda I)=0$. The last equality being because $det(A-lambda I)=0$. The assumption of $A$ invertible allows to know that $lambda neq 0$ and that $A^-1$ exists.
    – JessicaMcRae
    Aug 1 at 11:07
















$detleft(det(A)A^-1-fracdet(A)lambdaIright)=det(A)det(A^-1-frac1lambdaI)=det(A)det(A^-1)det(lambda I-A)=(-1)^ndet(A)det(A^-1)det(A-lambda I)=0$. The last equality being because $det(A-lambda I)=0$. The assumption of $A$ invertible allows to know that $lambda neq 0$ and that $A^-1$ exists.
– JessicaMcRae
Aug 1 at 11:07





$detleft(det(A)A^-1-fracdet(A)lambdaIright)=det(A)det(A^-1-frac1lambdaI)=det(A)det(A^-1)det(lambda I-A)=(-1)^ndet(A)det(A^-1)det(A-lambda I)=0$. The last equality being because $det(A-lambda I)=0$. The assumption of $A$ invertible allows to know that $lambda neq 0$ and that $A^-1$ exists.
– JessicaMcRae
Aug 1 at 11:07











2 Answers
2






active

oldest

votes

















up vote
0
down vote













Let $A$ be invertible. As you rightly remarked, then $mathrmadj(A)=mathrmdet(A)A^-1$. We can even prove the following stronger proposition:



Proposition: For $A$ invertible, $lambdaneq 0$ is an eigenvalue of $A$ iff $mathrmdet(A)lambda^-1$ is an eigenvalue of $mathrmadj(A)$:



Proof:
$$
Av=lambda vLeftrightarrow mathrmadj(A)(Av)=mathrmadj(A)(lambda v)Leftrightarrow mathrmdet(A)A^-1(Av)=mathrmdet(A)A^-1(lambda v)Leftrightarrow mathrmdet(A)v=mathrmdet(A)lambda A^-1(v)Leftrightarrowmathrmdet(A)lambda^-1v=mathrmdet(A)A^-1(v)Leftrightarrowmathrmdet(A)lambda^-1v=mathrmadj(A)v
$$
$Box$



You may rephrase this result in terms of roots of the characteristic polynomial, as you naturally have for $lambdaneq 0$ that $mathrmdet(A-lambda E_n)=0$ iff $lambda$ is an eigenvalue of $A$ iff $mathrmdet(A)lambda^-1$ is an eigenvalue of $mathrmadj(A)$ iff $mathrmdet(mathrmadj(A)-mathrmdet(A)lambda^-1E_n)=0$.



Obviously, the condition $lambdaneq 0$ is w.l.o.g. as $0$ is a eigenvalue of $A$ iff $det(A-0E_n)=det(A)=0$ iff $A$ is singular.






share|cite|improve this answer






























    up vote
    0
    down vote













    Let $B:=det(A) A^-1$. For a scalar $mu ne 0 $ and a vector $x ne 0$ we have



    $Bx= mu x iff det(A)A^-1x= mu x iff det(A)x= mu Ax iff Ax= fracdet(A)mux.$






    share|cite|improve this answer























    • I think you mean $mathrmdet(A)$ instead of $mathrmdet(a)$.
      – zzuussee
      Aug 1 at 13:50










    • Oops, you are right !
      – Fred
      Aug 2 at 7:59










    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2868949%2fif-lambda-is-a-characteristic-root-of-a-non-singular-matrix-a-then-prove-t%23new-answer', 'question_page');

    );

    Post as a guest






























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote













    Let $A$ be invertible. As you rightly remarked, then $mathrmadj(A)=mathrmdet(A)A^-1$. We can even prove the following stronger proposition:



    Proposition: For $A$ invertible, $lambdaneq 0$ is an eigenvalue of $A$ iff $mathrmdet(A)lambda^-1$ is an eigenvalue of $mathrmadj(A)$:



    Proof:
    $$
    Av=lambda vLeftrightarrow mathrmadj(A)(Av)=mathrmadj(A)(lambda v)Leftrightarrow mathrmdet(A)A^-1(Av)=mathrmdet(A)A^-1(lambda v)Leftrightarrow mathrmdet(A)v=mathrmdet(A)lambda A^-1(v)Leftrightarrowmathrmdet(A)lambda^-1v=mathrmdet(A)A^-1(v)Leftrightarrowmathrmdet(A)lambda^-1v=mathrmadj(A)v
    $$
    $Box$



    You may rephrase this result in terms of roots of the characteristic polynomial, as you naturally have for $lambdaneq 0$ that $mathrmdet(A-lambda E_n)=0$ iff $lambda$ is an eigenvalue of $A$ iff $mathrmdet(A)lambda^-1$ is an eigenvalue of $mathrmadj(A)$ iff $mathrmdet(mathrmadj(A)-mathrmdet(A)lambda^-1E_n)=0$.



    Obviously, the condition $lambdaneq 0$ is w.l.o.g. as $0$ is a eigenvalue of $A$ iff $det(A-0E_n)=det(A)=0$ iff $A$ is singular.






    share|cite|improve this answer



























      up vote
      0
      down vote













      Let $A$ be invertible. As you rightly remarked, then $mathrmadj(A)=mathrmdet(A)A^-1$. We can even prove the following stronger proposition:



      Proposition: For $A$ invertible, $lambdaneq 0$ is an eigenvalue of $A$ iff $mathrmdet(A)lambda^-1$ is an eigenvalue of $mathrmadj(A)$:



      Proof:
      $$
      Av=lambda vLeftrightarrow mathrmadj(A)(Av)=mathrmadj(A)(lambda v)Leftrightarrow mathrmdet(A)A^-1(Av)=mathrmdet(A)A^-1(lambda v)Leftrightarrow mathrmdet(A)v=mathrmdet(A)lambda A^-1(v)Leftrightarrowmathrmdet(A)lambda^-1v=mathrmdet(A)A^-1(v)Leftrightarrowmathrmdet(A)lambda^-1v=mathrmadj(A)v
      $$
      $Box$



      You may rephrase this result in terms of roots of the characteristic polynomial, as you naturally have for $lambdaneq 0$ that $mathrmdet(A-lambda E_n)=0$ iff $lambda$ is an eigenvalue of $A$ iff $mathrmdet(A)lambda^-1$ is an eigenvalue of $mathrmadj(A)$ iff $mathrmdet(mathrmadj(A)-mathrmdet(A)lambda^-1E_n)=0$.



      Obviously, the condition $lambdaneq 0$ is w.l.o.g. as $0$ is a eigenvalue of $A$ iff $det(A-0E_n)=det(A)=0$ iff $A$ is singular.






      share|cite|improve this answer

























        up vote
        0
        down vote










        up vote
        0
        down vote









        Let $A$ be invertible. As you rightly remarked, then $mathrmadj(A)=mathrmdet(A)A^-1$. We can even prove the following stronger proposition:



        Proposition: For $A$ invertible, $lambdaneq 0$ is an eigenvalue of $A$ iff $mathrmdet(A)lambda^-1$ is an eigenvalue of $mathrmadj(A)$:



        Proof:
        $$
        Av=lambda vLeftrightarrow mathrmadj(A)(Av)=mathrmadj(A)(lambda v)Leftrightarrow mathrmdet(A)A^-1(Av)=mathrmdet(A)A^-1(lambda v)Leftrightarrow mathrmdet(A)v=mathrmdet(A)lambda A^-1(v)Leftrightarrowmathrmdet(A)lambda^-1v=mathrmdet(A)A^-1(v)Leftrightarrowmathrmdet(A)lambda^-1v=mathrmadj(A)v
        $$
        $Box$



        You may rephrase this result in terms of roots of the characteristic polynomial, as you naturally have for $lambdaneq 0$ that $mathrmdet(A-lambda E_n)=0$ iff $lambda$ is an eigenvalue of $A$ iff $mathrmdet(A)lambda^-1$ is an eigenvalue of $mathrmadj(A)$ iff $mathrmdet(mathrmadj(A)-mathrmdet(A)lambda^-1E_n)=0$.



        Obviously, the condition $lambdaneq 0$ is w.l.o.g. as $0$ is a eigenvalue of $A$ iff $det(A-0E_n)=det(A)=0$ iff $A$ is singular.






        share|cite|improve this answer















        Let $A$ be invertible. As you rightly remarked, then $mathrmadj(A)=mathrmdet(A)A^-1$. We can even prove the following stronger proposition:



        Proposition: For $A$ invertible, $lambdaneq 0$ is an eigenvalue of $A$ iff $mathrmdet(A)lambda^-1$ is an eigenvalue of $mathrmadj(A)$:



        Proof:
        $$
        Av=lambda vLeftrightarrow mathrmadj(A)(Av)=mathrmadj(A)(lambda v)Leftrightarrow mathrmdet(A)A^-1(Av)=mathrmdet(A)A^-1(lambda v)Leftrightarrow mathrmdet(A)v=mathrmdet(A)lambda A^-1(v)Leftrightarrowmathrmdet(A)lambda^-1v=mathrmdet(A)A^-1(v)Leftrightarrowmathrmdet(A)lambda^-1v=mathrmadj(A)v
        $$
        $Box$



        You may rephrase this result in terms of roots of the characteristic polynomial, as you naturally have for $lambdaneq 0$ that $mathrmdet(A-lambda E_n)=0$ iff $lambda$ is an eigenvalue of $A$ iff $mathrmdet(A)lambda^-1$ is an eigenvalue of $mathrmadj(A)$ iff $mathrmdet(mathrmadj(A)-mathrmdet(A)lambda^-1E_n)=0$.



        Obviously, the condition $lambdaneq 0$ is w.l.o.g. as $0$ is a eigenvalue of $A$ iff $det(A-0E_n)=det(A)=0$ iff $A$ is singular.







        share|cite|improve this answer















        share|cite|improve this answer



        share|cite|improve this answer








        edited Aug 1 at 21:09


























        answered Aug 1 at 11:15









        zzuussee

        1,152419




        1,152419




















            up vote
            0
            down vote













            Let $B:=det(A) A^-1$. For a scalar $mu ne 0 $ and a vector $x ne 0$ we have



            $Bx= mu x iff det(A)A^-1x= mu x iff det(A)x= mu Ax iff Ax= fracdet(A)mux.$






            share|cite|improve this answer























            • I think you mean $mathrmdet(A)$ instead of $mathrmdet(a)$.
              – zzuussee
              Aug 1 at 13:50










            • Oops, you are right !
              – Fred
              Aug 2 at 7:59














            up vote
            0
            down vote













            Let $B:=det(A) A^-1$. For a scalar $mu ne 0 $ and a vector $x ne 0$ we have



            $Bx= mu x iff det(A)A^-1x= mu x iff det(A)x= mu Ax iff Ax= fracdet(A)mux.$






            share|cite|improve this answer























            • I think you mean $mathrmdet(A)$ instead of $mathrmdet(a)$.
              – zzuussee
              Aug 1 at 13:50










            • Oops, you are right !
              – Fred
              Aug 2 at 7:59












            up vote
            0
            down vote










            up vote
            0
            down vote









            Let $B:=det(A) A^-1$. For a scalar $mu ne 0 $ and a vector $x ne 0$ we have



            $Bx= mu x iff det(A)A^-1x= mu x iff det(A)x= mu Ax iff Ax= fracdet(A)mux.$






            share|cite|improve this answer















            Let $B:=det(A) A^-1$. For a scalar $mu ne 0 $ and a vector $x ne 0$ we have



            $Bx= mu x iff det(A)A^-1x= mu x iff det(A)x= mu Ax iff Ax= fracdet(A)mux.$







            share|cite|improve this answer















            share|cite|improve this answer



            share|cite|improve this answer








            edited Aug 2 at 7:59


























            answered Aug 1 at 11:16









            Fred

            37k1237




            37k1237











            • I think you mean $mathrmdet(A)$ instead of $mathrmdet(a)$.
              – zzuussee
              Aug 1 at 13:50










            • Oops, you are right !
              – Fred
              Aug 2 at 7:59
















            • I think you mean $mathrmdet(A)$ instead of $mathrmdet(a)$.
              – zzuussee
              Aug 1 at 13:50










            • Oops, you are right !
              – Fred
              Aug 2 at 7:59















            I think you mean $mathrmdet(A)$ instead of $mathrmdet(a)$.
            – zzuussee
            Aug 1 at 13:50




            I think you mean $mathrmdet(A)$ instead of $mathrmdet(a)$.
            – zzuussee
            Aug 1 at 13:50












            Oops, you are right !
            – Fred
            Aug 2 at 7:59




            Oops, you are right !
            – Fred
            Aug 2 at 7:59












             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2868949%2fif-lambda-is-a-characteristic-root-of-a-non-singular-matrix-a-then-prove-t%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What is the equation of a 3D cone with generalised tilt?

            Color the edges and diagonals of a regular polygon

            Relationship between determinant of matrix and determinant of adjoint?