Integrate $int frac11+ tan xdx$ [duplicate]
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
This question already has an answer here:
Simplest way to integrate $int frac11+tan xdx,$
4 answers
Does this integral have a closed form?
$$int frac11+ tan x,dx$$
My attempt:
$$int frac11+ tan x,dx=ln (sin x + cos x) +int fractan x1+ tan x,dx$$
What is next?
calculus
marked as duplicate by gt6989b, Clayton, Batominovski, amWhy
StackExchange.ready(function()
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function()
$hover.showInfoMessage('',
messageElement: $msg.clone().show(),
transient: false,
position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
dismissable: false,
relativeToBody: true
);
,
function()
StackExchange.helpers.removeMessages();
);
);
);
Jul 27 at 0:19
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |Â
up vote
1
down vote
favorite
This question already has an answer here:
Simplest way to integrate $int frac11+tan xdx,$
4 answers
Does this integral have a closed form?
$$int frac11+ tan x,dx$$
My attempt:
$$int frac11+ tan x,dx=ln (sin x + cos x) +int fractan x1+ tan x,dx$$
What is next?
calculus
marked as duplicate by gt6989b, Clayton, Batominovski, amWhy
StackExchange.ready(function()
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function()
$hover.showInfoMessage('',
messageElement: $msg.clone().show(),
transient: false,
position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
dismissable: false,
relativeToBody: true
);
,
function()
StackExchange.helpers.removeMessages();
);
);
);
Jul 27 at 0:19
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
This question already has an answer here:
Simplest way to integrate $int frac11+tan xdx,$
4 answers
Does this integral have a closed form?
$$int frac11+ tan x,dx$$
My attempt:
$$int frac11+ tan x,dx=ln (sin x + cos x) +int fractan x1+ tan x,dx$$
What is next?
calculus
This question already has an answer here:
Simplest way to integrate $int frac11+tan xdx,$
4 answers
Does this integral have a closed form?
$$int frac11+ tan x,dx$$
My attempt:
$$int frac11+ tan x,dx=ln (sin x + cos x) +int fractan x1+ tan x,dx$$
What is next?
This question already has an answer here:
Simplest way to integrate $int frac11+tan xdx,$
4 answers
calculus
edited Jul 26 at 21:11
Michael Hardy
204k23186461
204k23186461
asked Jul 26 at 20:28
sirous dehmami
294
294
marked as duplicate by gt6989b, Clayton, Batominovski, amWhy
StackExchange.ready(function()
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function()
$hover.showInfoMessage('',
messageElement: $msg.clone().show(),
transient: false,
position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
dismissable: false,
relativeToBody: true
);
,
function()
StackExchange.helpers.removeMessages();
);
);
);
Jul 27 at 0:19
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by gt6989b, Clayton, Batominovski, amWhy
StackExchange.ready(function()
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function()
$hover.showInfoMessage('',
messageElement: $msg.clone().show(),
transient: false,
position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
dismissable: false,
relativeToBody: true
);
,
function()
StackExchange.helpers.removeMessages();
);
);
);
Jul 27 at 0:19
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |Â
add a comment |Â
7 Answers
7
active
oldest
votes
up vote
7
down vote
$$
I=int frac 1 1+tan x , dx=int frac cos xcos x +sin x , dx\
J=int frac sin xcos x +sin x , dx\
I+J=int frac cos x+sin xcos x +sin x , dx = x+C_1\ \
I-J=int frac cos x-sin xcos x +sin x ,dx=int frac dleft( sin x +cos xright) cos x +sin x =ln left| sin x +cos x right| + C_2 \
2I = x+ln left| sin x +cos xright| + C_3 \
I=frac 1 2 left[ x+ln left| sin x +cos x right| + C_3 right]
$$
Writing int frac cos x + sin x cos x + sin x dx where int fraccos x + sin xcos x + sin x , dx would suffice doesn't serve a purpose and makes editing harder.
– Michael Hardy
Jul 26 at 22:26
@MichaelHardy, thank you for editing, but I am still can't find better-writing program rather than this one s1.daumcdn.net/editor/fp/service_nc/pencil/…
– haqnatural
Jul 26 at 22:32
Notice this code: int fraccos x + sin xcos x + sin x , dx. That's not really complicated. Do you need a program to do that?
– Michael Hardy
Jul 26 at 22:37
yes, it is not, but many such formulas take a track of time to do so
– haqnatural
Jul 26 at 22:47
add a comment |Â
up vote
1
down vote
Notice that $$int fractanx1+tanx= int 1-frac11+tanx$$
add a comment |Â
up vote
1
down vote
Continuation from the Work in the Question
$$
beginalign
intfrac11+tan(x),mathrmdx
&=log(sin(x)+cos(x))+intfractan(x)1+tan(x),mathrmdxtag1\
&=frac12log(sin(x)+cos(x))+frac12intfrac1+tan(x)1+tan(x),mathrmdxtag2\
&=frac12(x+log(sin(x)+cos(x)))+Ctag3
endalign
$$
Explanation:
$(1)$: copied from the question
$(2)$: average the left and right sides of $(1)$
$(3)$: $int1,mathrmdx=x+C$
Another Approach
One can also try $u=tan(x)$ and partial fractions:
$$
beginalign
intfracmathrmdx1+tan(x)
&=intfracmathrmdtan(x)(1+tan(x))left(1+tan^2(x)right)tag4\
&=intfrac12left(frac11+u+frac1-u1+u^2right)mathrmdutag5\
&=frac12left(log(1+u)+tan^-1(u)-frac12logleft(1+u^2right)right)+Ctag6\
&=frac12(x+log(sin(x)+cos(x)))+Ctag7
endalign
$$
Explanation:
$(4)$: $mathrmdtan(x)=left(1+tan^2(x)right),mathrmdx$
$(5)$: $u=tan(x)$ and partial fractions
$(6)$: integrate
$(7)$: backsubstitute
add a comment |Â
up vote
0
down vote
$$ tan x=frac 2tan x/21+tan^2 x/2$$
Solves your integral with $$u=tan x/2$$
add a comment |Â
up vote
0
down vote
Notice that
$$(log(sin xpmcos x))'=fraccos xmpsin xsin x+cos x$$
Then
$$(log(sin x+cos x)+log(sin x-cos x))'=(log(sin^2x-cos^2x))'=frac2cos xsin x+cos x.$$
add a comment |Â
up vote
0
down vote
How about:
$$intfrac11+tan(x)dx= ln(sin(x)+cos(x)) +intfractan(x)1+tan(x)dx= ln(sin(x)+cos(x)) +intleft(1-frac11+tan(x)right)dx$$
$$therefore I= ln(sin(x)+cos(x))+x-I$$
$$therefore I=fracln(sin(x)+cos(x))+x2+C $$
add a comment |Â
up vote
0
down vote
If the numerator and denominator are both polynomials of trigonometric functions, then the substitution $y= tan(x/2)$ should always work. It is not necessarily the shortest solution, but it works.
add a comment |Â
7 Answers
7
active
oldest
votes
7 Answers
7
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
7
down vote
$$
I=int frac 1 1+tan x , dx=int frac cos xcos x +sin x , dx\
J=int frac sin xcos x +sin x , dx\
I+J=int frac cos x+sin xcos x +sin x , dx = x+C_1\ \
I-J=int frac cos x-sin xcos x +sin x ,dx=int frac dleft( sin x +cos xright) cos x +sin x =ln left| sin x +cos x right| + C_2 \
2I = x+ln left| sin x +cos xright| + C_3 \
I=frac 1 2 left[ x+ln left| sin x +cos x right| + C_3 right]
$$
Writing int frac cos x + sin x cos x + sin x dx where int fraccos x + sin xcos x + sin x , dx would suffice doesn't serve a purpose and makes editing harder.
– Michael Hardy
Jul 26 at 22:26
@MichaelHardy, thank you for editing, but I am still can't find better-writing program rather than this one s1.daumcdn.net/editor/fp/service_nc/pencil/…
– haqnatural
Jul 26 at 22:32
Notice this code: int fraccos x + sin xcos x + sin x , dx. That's not really complicated. Do you need a program to do that?
– Michael Hardy
Jul 26 at 22:37
yes, it is not, but many such formulas take a track of time to do so
– haqnatural
Jul 26 at 22:47
add a comment |Â
up vote
7
down vote
$$
I=int frac 1 1+tan x , dx=int frac cos xcos x +sin x , dx\
J=int frac sin xcos x +sin x , dx\
I+J=int frac cos x+sin xcos x +sin x , dx = x+C_1\ \
I-J=int frac cos x-sin xcos x +sin x ,dx=int frac dleft( sin x +cos xright) cos x +sin x =ln left| sin x +cos x right| + C_2 \
2I = x+ln left| sin x +cos xright| + C_3 \
I=frac 1 2 left[ x+ln left| sin x +cos x right| + C_3 right]
$$
Writing int frac cos x + sin x cos x + sin x dx where int fraccos x + sin xcos x + sin x , dx would suffice doesn't serve a purpose and makes editing harder.
– Michael Hardy
Jul 26 at 22:26
@MichaelHardy, thank you for editing, but I am still can't find better-writing program rather than this one s1.daumcdn.net/editor/fp/service_nc/pencil/…
– haqnatural
Jul 26 at 22:32
Notice this code: int fraccos x + sin xcos x + sin x , dx. That's not really complicated. Do you need a program to do that?
– Michael Hardy
Jul 26 at 22:37
yes, it is not, but many such formulas take a track of time to do so
– haqnatural
Jul 26 at 22:47
add a comment |Â
up vote
7
down vote
up vote
7
down vote
$$
I=int frac 1 1+tan x , dx=int frac cos xcos x +sin x , dx\
J=int frac sin xcos x +sin x , dx\
I+J=int frac cos x+sin xcos x +sin x , dx = x+C_1\ \
I-J=int frac cos x-sin xcos x +sin x ,dx=int frac dleft( sin x +cos xright) cos x +sin x =ln left| sin x +cos x right| + C_2 \
2I = x+ln left| sin x +cos xright| + C_3 \
I=frac 1 2 left[ x+ln left| sin x +cos x right| + C_3 right]
$$
$$
I=int frac 1 1+tan x , dx=int frac cos xcos x +sin x , dx\
J=int frac sin xcos x +sin x , dx\
I+J=int frac cos x+sin xcos x +sin x , dx = x+C_1\ \
I-J=int frac cos x-sin xcos x +sin x ,dx=int frac dleft( sin x +cos xright) cos x +sin x =ln left| sin x +cos x right| + C_2 \
2I = x+ln left| sin x +cos xright| + C_3 \
I=frac 1 2 left[ x+ln left| sin x +cos x right| + C_3 right]
$$
edited Jul 26 at 22:22
Michael Hardy
204k23186461
204k23186461
answered Jul 26 at 20:33


haqnatural
20.5k72457
20.5k72457
Writing int frac cos x + sin x cos x + sin x dx where int fraccos x + sin xcos x + sin x , dx would suffice doesn't serve a purpose and makes editing harder.
– Michael Hardy
Jul 26 at 22:26
@MichaelHardy, thank you for editing, but I am still can't find better-writing program rather than this one s1.daumcdn.net/editor/fp/service_nc/pencil/…
– haqnatural
Jul 26 at 22:32
Notice this code: int fraccos x + sin xcos x + sin x , dx. That's not really complicated. Do you need a program to do that?
– Michael Hardy
Jul 26 at 22:37
yes, it is not, but many such formulas take a track of time to do so
– haqnatural
Jul 26 at 22:47
add a comment |Â
Writing int frac cos x + sin x cos x + sin x dx where int fraccos x + sin xcos x + sin x , dx would suffice doesn't serve a purpose and makes editing harder.
– Michael Hardy
Jul 26 at 22:26
@MichaelHardy, thank you for editing, but I am still can't find better-writing program rather than this one s1.daumcdn.net/editor/fp/service_nc/pencil/…
– haqnatural
Jul 26 at 22:32
Notice this code: int fraccos x + sin xcos x + sin x , dx. That's not really complicated. Do you need a program to do that?
– Michael Hardy
Jul 26 at 22:37
yes, it is not, but many such formulas take a track of time to do so
– haqnatural
Jul 26 at 22:47
Writing int frac cos x + sin x cos x + sin x dx where int fraccos x + sin xcos x + sin x , dx would suffice doesn't serve a purpose and makes editing harder.
– Michael Hardy
Jul 26 at 22:26
Writing int frac cos x + sin x cos x + sin x dx where int fraccos x + sin xcos x + sin x , dx would suffice doesn't serve a purpose and makes editing harder.
– Michael Hardy
Jul 26 at 22:26
@MichaelHardy, thank you for editing, but I am still can't find better-writing program rather than this one s1.daumcdn.net/editor/fp/service_nc/pencil/…
– haqnatural
Jul 26 at 22:32
@MichaelHardy, thank you for editing, but I am still can't find better-writing program rather than this one s1.daumcdn.net/editor/fp/service_nc/pencil/…
– haqnatural
Jul 26 at 22:32
Notice this code: int fraccos x + sin xcos x + sin x , dx. That's not really complicated. Do you need a program to do that?
– Michael Hardy
Jul 26 at 22:37
Notice this code: int fraccos x + sin xcos x + sin x , dx. That's not really complicated. Do you need a program to do that?
– Michael Hardy
Jul 26 at 22:37
yes, it is not, but many such formulas take a track of time to do so
– haqnatural
Jul 26 at 22:47
yes, it is not, but many such formulas take a track of time to do so
– haqnatural
Jul 26 at 22:47
add a comment |Â
up vote
1
down vote
Notice that $$int fractanx1+tanx= int 1-frac11+tanx$$
add a comment |Â
up vote
1
down vote
Notice that $$int fractanx1+tanx= int 1-frac11+tanx$$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Notice that $$int fractanx1+tanx= int 1-frac11+tanx$$
Notice that $$int fractanx1+tanx= int 1-frac11+tanx$$
answered Jul 26 at 21:21


idk
9431414
9431414
add a comment |Â
add a comment |Â
up vote
1
down vote
Continuation from the Work in the Question
$$
beginalign
intfrac11+tan(x),mathrmdx
&=log(sin(x)+cos(x))+intfractan(x)1+tan(x),mathrmdxtag1\
&=frac12log(sin(x)+cos(x))+frac12intfrac1+tan(x)1+tan(x),mathrmdxtag2\
&=frac12(x+log(sin(x)+cos(x)))+Ctag3
endalign
$$
Explanation:
$(1)$: copied from the question
$(2)$: average the left and right sides of $(1)$
$(3)$: $int1,mathrmdx=x+C$
Another Approach
One can also try $u=tan(x)$ and partial fractions:
$$
beginalign
intfracmathrmdx1+tan(x)
&=intfracmathrmdtan(x)(1+tan(x))left(1+tan^2(x)right)tag4\
&=intfrac12left(frac11+u+frac1-u1+u^2right)mathrmdutag5\
&=frac12left(log(1+u)+tan^-1(u)-frac12logleft(1+u^2right)right)+Ctag6\
&=frac12(x+log(sin(x)+cos(x)))+Ctag7
endalign
$$
Explanation:
$(4)$: $mathrmdtan(x)=left(1+tan^2(x)right),mathrmdx$
$(5)$: $u=tan(x)$ and partial fractions
$(6)$: integrate
$(7)$: backsubstitute
add a comment |Â
up vote
1
down vote
Continuation from the Work in the Question
$$
beginalign
intfrac11+tan(x),mathrmdx
&=log(sin(x)+cos(x))+intfractan(x)1+tan(x),mathrmdxtag1\
&=frac12log(sin(x)+cos(x))+frac12intfrac1+tan(x)1+tan(x),mathrmdxtag2\
&=frac12(x+log(sin(x)+cos(x)))+Ctag3
endalign
$$
Explanation:
$(1)$: copied from the question
$(2)$: average the left and right sides of $(1)$
$(3)$: $int1,mathrmdx=x+C$
Another Approach
One can also try $u=tan(x)$ and partial fractions:
$$
beginalign
intfracmathrmdx1+tan(x)
&=intfracmathrmdtan(x)(1+tan(x))left(1+tan^2(x)right)tag4\
&=intfrac12left(frac11+u+frac1-u1+u^2right)mathrmdutag5\
&=frac12left(log(1+u)+tan^-1(u)-frac12logleft(1+u^2right)right)+Ctag6\
&=frac12(x+log(sin(x)+cos(x)))+Ctag7
endalign
$$
Explanation:
$(4)$: $mathrmdtan(x)=left(1+tan^2(x)right),mathrmdx$
$(5)$: $u=tan(x)$ and partial fractions
$(6)$: integrate
$(7)$: backsubstitute
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Continuation from the Work in the Question
$$
beginalign
intfrac11+tan(x),mathrmdx
&=log(sin(x)+cos(x))+intfractan(x)1+tan(x),mathrmdxtag1\
&=frac12log(sin(x)+cos(x))+frac12intfrac1+tan(x)1+tan(x),mathrmdxtag2\
&=frac12(x+log(sin(x)+cos(x)))+Ctag3
endalign
$$
Explanation:
$(1)$: copied from the question
$(2)$: average the left and right sides of $(1)$
$(3)$: $int1,mathrmdx=x+C$
Another Approach
One can also try $u=tan(x)$ and partial fractions:
$$
beginalign
intfracmathrmdx1+tan(x)
&=intfracmathrmdtan(x)(1+tan(x))left(1+tan^2(x)right)tag4\
&=intfrac12left(frac11+u+frac1-u1+u^2right)mathrmdutag5\
&=frac12left(log(1+u)+tan^-1(u)-frac12logleft(1+u^2right)right)+Ctag6\
&=frac12(x+log(sin(x)+cos(x)))+Ctag7
endalign
$$
Explanation:
$(4)$: $mathrmdtan(x)=left(1+tan^2(x)right),mathrmdx$
$(5)$: $u=tan(x)$ and partial fractions
$(6)$: integrate
$(7)$: backsubstitute
Continuation from the Work in the Question
$$
beginalign
intfrac11+tan(x),mathrmdx
&=log(sin(x)+cos(x))+intfractan(x)1+tan(x),mathrmdxtag1\
&=frac12log(sin(x)+cos(x))+frac12intfrac1+tan(x)1+tan(x),mathrmdxtag2\
&=frac12(x+log(sin(x)+cos(x)))+Ctag3
endalign
$$
Explanation:
$(1)$: copied from the question
$(2)$: average the left and right sides of $(1)$
$(3)$: $int1,mathrmdx=x+C$
Another Approach
One can also try $u=tan(x)$ and partial fractions:
$$
beginalign
intfracmathrmdx1+tan(x)
&=intfracmathrmdtan(x)(1+tan(x))left(1+tan^2(x)right)tag4\
&=intfrac12left(frac11+u+frac1-u1+u^2right)mathrmdutag5\
&=frac12left(log(1+u)+tan^-1(u)-frac12logleft(1+u^2right)right)+Ctag6\
&=frac12(x+log(sin(x)+cos(x)))+Ctag7
endalign
$$
Explanation:
$(4)$: $mathrmdtan(x)=left(1+tan^2(x)right),mathrmdx$
$(5)$: $u=tan(x)$ and partial fractions
$(6)$: integrate
$(7)$: backsubstitute
edited Jul 27 at 6:46
answered Jul 26 at 23:04
robjohn♦
258k25297612
258k25297612
add a comment |Â
add a comment |Â
up vote
0
down vote
$$ tan x=frac 2tan x/21+tan^2 x/2$$
Solves your integral with $$u=tan x/2$$
add a comment |Â
up vote
0
down vote
$$ tan x=frac 2tan x/21+tan^2 x/2$$
Solves your integral with $$u=tan x/2$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
$$ tan x=frac 2tan x/21+tan^2 x/2$$
Solves your integral with $$u=tan x/2$$
$$ tan x=frac 2tan x/21+tan^2 x/2$$
Solves your integral with $$u=tan x/2$$
answered Jul 26 at 21:03


Mohammad Riazi-Kermani
27.3k41851
27.3k41851
add a comment |Â
add a comment |Â
up vote
0
down vote
Notice that
$$(log(sin xpmcos x))'=fraccos xmpsin xsin x+cos x$$
Then
$$(log(sin x+cos x)+log(sin x-cos x))'=(log(sin^2x-cos^2x))'=frac2cos xsin x+cos x.$$
add a comment |Â
up vote
0
down vote
Notice that
$$(log(sin xpmcos x))'=fraccos xmpsin xsin x+cos x$$
Then
$$(log(sin x+cos x)+log(sin x-cos x))'=(log(sin^2x-cos^2x))'=frac2cos xsin x+cos x.$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Notice that
$$(log(sin xpmcos x))'=fraccos xmpsin xsin x+cos x$$
Then
$$(log(sin x+cos x)+log(sin x-cos x))'=(log(sin^2x-cos^2x))'=frac2cos xsin x+cos x.$$
Notice that
$$(log(sin xpmcos x))'=fraccos xmpsin xsin x+cos x$$
Then
$$(log(sin x+cos x)+log(sin x-cos x))'=(log(sin^2x-cos^2x))'=frac2cos xsin x+cos x.$$
answered Jul 26 at 21:15
Yves Daoust
110k665203
110k665203
add a comment |Â
add a comment |Â
up vote
0
down vote
How about:
$$intfrac11+tan(x)dx= ln(sin(x)+cos(x)) +intfractan(x)1+tan(x)dx= ln(sin(x)+cos(x)) +intleft(1-frac11+tan(x)right)dx$$
$$therefore I= ln(sin(x)+cos(x))+x-I$$
$$therefore I=fracln(sin(x)+cos(x))+x2+C $$
add a comment |Â
up vote
0
down vote
How about:
$$intfrac11+tan(x)dx= ln(sin(x)+cos(x)) +intfractan(x)1+tan(x)dx= ln(sin(x)+cos(x)) +intleft(1-frac11+tan(x)right)dx$$
$$therefore I= ln(sin(x)+cos(x))+x-I$$
$$therefore I=fracln(sin(x)+cos(x))+x2+C $$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
How about:
$$intfrac11+tan(x)dx= ln(sin(x)+cos(x)) +intfractan(x)1+tan(x)dx= ln(sin(x)+cos(x)) +intleft(1-frac11+tan(x)right)dx$$
$$therefore I= ln(sin(x)+cos(x))+x-I$$
$$therefore I=fracln(sin(x)+cos(x))+x2+C $$
How about:
$$intfrac11+tan(x)dx= ln(sin(x)+cos(x)) +intfractan(x)1+tan(x)dx= ln(sin(x)+cos(x)) +intleft(1-frac11+tan(x)right)dx$$
$$therefore I= ln(sin(x)+cos(x))+x-I$$
$$therefore I=fracln(sin(x)+cos(x))+x2+C $$
answered Jul 26 at 21:21
Henry Lee
49210
49210
add a comment |Â
add a comment |Â
up vote
0
down vote
If the numerator and denominator are both polynomials of trigonometric functions, then the substitution $y= tan(x/2)$ should always work. It is not necessarily the shortest solution, but it works.
add a comment |Â
up vote
0
down vote
If the numerator and denominator are both polynomials of trigonometric functions, then the substitution $y= tan(x/2)$ should always work. It is not necessarily the shortest solution, but it works.
add a comment |Â
up vote
0
down vote
up vote
0
down vote
If the numerator and denominator are both polynomials of trigonometric functions, then the substitution $y= tan(x/2)$ should always work. It is not necessarily the shortest solution, but it works.
If the numerator and denominator are both polynomials of trigonometric functions, then the substitution $y= tan(x/2)$ should always work. It is not necessarily the shortest solution, but it works.
answered Jul 26 at 22:15


A. Pongrácz
1,574115
1,574115
add a comment |Â
add a comment |Â