Integrate $int frac11+ tan xdx$ [duplicate]

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite
1













This question already has an answer here:



  • Simplest way to integrate $int frac11+tan xdx,$

    4 answers



Does this integral have a closed form?



$$int frac11+ tan x,dx$$



My attempt:



$$int frac11+ tan x,dx=ln (sin x + cos x) +int fractan x1+ tan x,dx$$



What is next?







share|cite|improve this question













marked as duplicate by gt6989b, Clayton, Batominovski, amWhy calculus
Users with the  calculus badge can single-handedly close calculus questions as duplicates and reopen them as needed.

StackExchange.ready(function()
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function()
$hover.showInfoMessage('',
messageElement: $msg.clone().show(),
transient: false,
position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
dismissable: false,
relativeToBody: true
);
,
function()
StackExchange.helpers.removeMessages();

);
);
);
Jul 27 at 0:19


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.


















    up vote
    1
    down vote

    favorite
    1













    This question already has an answer here:



    • Simplest way to integrate $int frac11+tan xdx,$

      4 answers



    Does this integral have a closed form?



    $$int frac11+ tan x,dx$$



    My attempt:



    $$int frac11+ tan x,dx=ln (sin x + cos x) +int fractan x1+ tan x,dx$$



    What is next?







    share|cite|improve this question













    marked as duplicate by gt6989b, Clayton, Batominovski, amWhy calculus
    Users with the  calculus badge can single-handedly close calculus questions as duplicates and reopen them as needed.

    StackExchange.ready(function()
    if (StackExchange.options.isMobile) return;

    $('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
    var $hover = $(this).addClass('hover-bound'),
    $msg = $hover.siblings('.dupe-hammer-message');

    $hover.hover(
    function()
    $hover.showInfoMessage('',
    messageElement: $msg.clone().show(),
    transient: false,
    position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
    dismissable: false,
    relativeToBody: true
    );
    ,
    function()
    StackExchange.helpers.removeMessages();

    );
    );
    );
    Jul 27 at 0:19


    This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
















      up vote
      1
      down vote

      favorite
      1









      up vote
      1
      down vote

      favorite
      1






      1






      This question already has an answer here:



      • Simplest way to integrate $int frac11+tan xdx,$

        4 answers



      Does this integral have a closed form?



      $$int frac11+ tan x,dx$$



      My attempt:



      $$int frac11+ tan x,dx=ln (sin x + cos x) +int fractan x1+ tan x,dx$$



      What is next?







      share|cite|improve this question














      This question already has an answer here:



      • Simplest way to integrate $int frac11+tan xdx,$

        4 answers



      Does this integral have a closed form?



      $$int frac11+ tan x,dx$$



      My attempt:



      $$int frac11+ tan x,dx=ln (sin x + cos x) +int fractan x1+ tan x,dx$$



      What is next?





      This question already has an answer here:



      • Simplest way to integrate $int frac11+tan xdx,$

        4 answers









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Jul 26 at 21:11









      Michael Hardy

      204k23186461




      204k23186461









      asked Jul 26 at 20:28









      sirous dehmami

      294




      294




      marked as duplicate by gt6989b, Clayton, Batominovski, amWhy calculus
      Users with the  calculus badge can single-handedly close calculus questions as duplicates and reopen them as needed.

      StackExchange.ready(function()
      if (StackExchange.options.isMobile) return;

      $('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
      var $hover = $(this).addClass('hover-bound'),
      $msg = $hover.siblings('.dupe-hammer-message');

      $hover.hover(
      function()
      $hover.showInfoMessage('',
      messageElement: $msg.clone().show(),
      transient: false,
      position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
      dismissable: false,
      relativeToBody: true
      );
      ,
      function()
      StackExchange.helpers.removeMessages();

      );
      );
      );
      Jul 27 at 0:19


      This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.






      marked as duplicate by gt6989b, Clayton, Batominovski, amWhy calculus
      Users with the  calculus badge can single-handedly close calculus questions as duplicates and reopen them as needed.

      StackExchange.ready(function()
      if (StackExchange.options.isMobile) return;

      $('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
      var $hover = $(this).addClass('hover-bound'),
      $msg = $hover.siblings('.dupe-hammer-message');

      $hover.hover(
      function()
      $hover.showInfoMessage('',
      messageElement: $msg.clone().show(),
      transient: false,
      position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
      dismissable: false,
      relativeToBody: true
      );
      ,
      function()
      StackExchange.helpers.removeMessages();

      );
      );
      );
      Jul 27 at 0:19


      This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.






















          7 Answers
          7






          active

          oldest

          votes

















          up vote
          7
          down vote













          $$
          I=int frac 1 1+tan x , dx=int frac cos xcos x +sin x , dx\
          J=int frac sin xcos x +sin x , dx\
          I+J=int frac cos x+sin xcos x +sin x , dx = x+C_1\ \
          I-J=int frac cos x-sin xcos x +sin x ,dx=int frac dleft( sin x +cos xright) cos x +sin x =ln left| sin x +cos x right| + C_2 \
          2I = x+ln left| sin x +cos xright| + C_3 \
          I=frac 1 2 left[ x+ln left| sin x +cos x right| + C_3 right]
          $$






          share|cite|improve this answer























          • Writing int frac cos x + sin x cos x + sin x dx where int fraccos x + sin xcos x + sin x , dx would suffice doesn't serve a purpose and makes editing harder.
            – Michael Hardy
            Jul 26 at 22:26










          • @MichaelHardy, thank you for editing, but I am still can't find better-writing program rather than this one s1.daumcdn.net/editor/fp/service_nc/pencil/…
            – haqnatural
            Jul 26 at 22:32










          • Notice this code: int fraccos x + sin xcos x + sin x , dx. That's not really complicated. Do you need a program to do that?
            – Michael Hardy
            Jul 26 at 22:37










          • yes, it is not, but many such formulas take a track of time to do so
            – haqnatural
            Jul 26 at 22:47

















          up vote
          1
          down vote













          Notice that $$int fractanx1+tanx= int 1-frac11+tanx$$






          share|cite|improve this answer




























            up vote
            1
            down vote













            Continuation from the Work in the Question
            $$
            beginalign
            intfrac11+tan(x),mathrmdx
            &=log(sin(x)+cos(x))+intfractan(x)1+tan(x),mathrmdxtag1\
            &=frac12log(sin(x)+cos(x))+frac12intfrac1+tan(x)1+tan(x),mathrmdxtag2\
            &=frac12(x+log(sin(x)+cos(x)))+Ctag3
            endalign
            $$
            Explanation:

            $(1)$: copied from the question

            $(2)$: average the left and right sides of $(1)$

            $(3)$: $int1,mathrmdx=x+C$




            Another Approach



            One can also try $u=tan(x)$ and partial fractions:
            $$
            beginalign
            intfracmathrmdx1+tan(x)
            &=intfracmathrmdtan(x)(1+tan(x))left(1+tan^2(x)right)tag4\
            &=intfrac12left(frac11+u+frac1-u1+u^2right)mathrmdutag5\
            &=frac12left(log(1+u)+tan^-1(u)-frac12logleft(1+u^2right)right)+Ctag6\
            &=frac12(x+log(sin(x)+cos(x)))+Ctag7
            endalign
            $$
            Explanation:

            $(4)$: $mathrmdtan(x)=left(1+tan^2(x)right),mathrmdx$

            $(5)$: $u=tan(x)$ and partial fractions

            $(6)$: integrate

            $(7)$: backsubstitute






            share|cite|improve this answer






























              up vote
              0
              down vote













              $$ tan x=frac 2tan x/21+tan^2 x/2$$
              Solves your integral with $$u=tan x/2$$






              share|cite|improve this answer




























                up vote
                0
                down vote













                Notice that



                $$(log(sin xpmcos x))'=fraccos xmpsin xsin x+cos x$$



                Then



                $$(log(sin x+cos x)+log(sin x-cos x))'=(log(sin^2x-cos^2x))'=frac2cos xsin x+cos x.$$






                share|cite|improve this answer




























                  up vote
                  0
                  down vote













                  How about:
                  $$intfrac11+tan(x)dx= ln(sin(x)+cos(x)) +intfractan(x)1+tan(x)dx= ln(sin(x)+cos(x)) +intleft(1-frac11+tan(x)right)dx$$
                  $$therefore I= ln(sin(x)+cos(x))+x-I$$
                  $$therefore I=fracln(sin(x)+cos(x))+x2+C $$






                  share|cite|improve this answer




























                    up vote
                    0
                    down vote













                    If the numerator and denominator are both polynomials of trigonometric functions, then the substitution $y= tan(x/2)$ should always work. It is not necessarily the shortest solution, but it works.






                    share|cite|improve this answer




























                      7 Answers
                      7






                      active

                      oldest

                      votes








                      7 Answers
                      7






                      active

                      oldest

                      votes









                      active

                      oldest

                      votes






                      active

                      oldest

                      votes








                      up vote
                      7
                      down vote













                      $$
                      I=int frac 1 1+tan x , dx=int frac cos xcos x +sin x , dx\
                      J=int frac sin xcos x +sin x , dx\
                      I+J=int frac cos x+sin xcos x +sin x , dx = x+C_1\ \
                      I-J=int frac cos x-sin xcos x +sin x ,dx=int frac dleft( sin x +cos xright) cos x +sin x =ln left| sin x +cos x right| + C_2 \
                      2I = x+ln left| sin x +cos xright| + C_3 \
                      I=frac 1 2 left[ x+ln left| sin x +cos x right| + C_3 right]
                      $$






                      share|cite|improve this answer























                      • Writing int frac cos x + sin x cos x + sin x dx where int fraccos x + sin xcos x + sin x , dx would suffice doesn't serve a purpose and makes editing harder.
                        – Michael Hardy
                        Jul 26 at 22:26










                      • @MichaelHardy, thank you for editing, but I am still can't find better-writing program rather than this one s1.daumcdn.net/editor/fp/service_nc/pencil/…
                        – haqnatural
                        Jul 26 at 22:32










                      • Notice this code: int fraccos x + sin xcos x + sin x , dx. That's not really complicated. Do you need a program to do that?
                        – Michael Hardy
                        Jul 26 at 22:37










                      • yes, it is not, but many such formulas take a track of time to do so
                        – haqnatural
                        Jul 26 at 22:47














                      up vote
                      7
                      down vote













                      $$
                      I=int frac 1 1+tan x , dx=int frac cos xcos x +sin x , dx\
                      J=int frac sin xcos x +sin x , dx\
                      I+J=int frac cos x+sin xcos x +sin x , dx = x+C_1\ \
                      I-J=int frac cos x-sin xcos x +sin x ,dx=int frac dleft( sin x +cos xright) cos x +sin x =ln left| sin x +cos x right| + C_2 \
                      2I = x+ln left| sin x +cos xright| + C_3 \
                      I=frac 1 2 left[ x+ln left| sin x +cos x right| + C_3 right]
                      $$






                      share|cite|improve this answer























                      • Writing int frac cos x + sin x cos x + sin x dx where int fraccos x + sin xcos x + sin x , dx would suffice doesn't serve a purpose and makes editing harder.
                        – Michael Hardy
                        Jul 26 at 22:26










                      • @MichaelHardy, thank you for editing, but I am still can't find better-writing program rather than this one s1.daumcdn.net/editor/fp/service_nc/pencil/…
                        – haqnatural
                        Jul 26 at 22:32










                      • Notice this code: int fraccos x + sin xcos x + sin x , dx. That's not really complicated. Do you need a program to do that?
                        – Michael Hardy
                        Jul 26 at 22:37










                      • yes, it is not, but many such formulas take a track of time to do so
                        – haqnatural
                        Jul 26 at 22:47












                      up vote
                      7
                      down vote










                      up vote
                      7
                      down vote









                      $$
                      I=int frac 1 1+tan x , dx=int frac cos xcos x +sin x , dx\
                      J=int frac sin xcos x +sin x , dx\
                      I+J=int frac cos x+sin xcos x +sin x , dx = x+C_1\ \
                      I-J=int frac cos x-sin xcos x +sin x ,dx=int frac dleft( sin x +cos xright) cos x +sin x =ln left| sin x +cos x right| + C_2 \
                      2I = x+ln left| sin x +cos xright| + C_3 \
                      I=frac 1 2 left[ x+ln left| sin x +cos x right| + C_3 right]
                      $$






                      share|cite|improve this answer















                      $$
                      I=int frac 1 1+tan x , dx=int frac cos xcos x +sin x , dx\
                      J=int frac sin xcos x +sin x , dx\
                      I+J=int frac cos x+sin xcos x +sin x , dx = x+C_1\ \
                      I-J=int frac cos x-sin xcos x +sin x ,dx=int frac dleft( sin x +cos xright) cos x +sin x =ln left| sin x +cos x right| + C_2 \
                      2I = x+ln left| sin x +cos xright| + C_3 \
                      I=frac 1 2 left[ x+ln left| sin x +cos x right| + C_3 right]
                      $$







                      share|cite|improve this answer















                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited Jul 26 at 22:22









                      Michael Hardy

                      204k23186461




                      204k23186461











                      answered Jul 26 at 20:33









                      haqnatural

                      20.5k72457




                      20.5k72457











                      • Writing int frac cos x + sin x cos x + sin x dx where int fraccos x + sin xcos x + sin x , dx would suffice doesn't serve a purpose and makes editing harder.
                        – Michael Hardy
                        Jul 26 at 22:26










                      • @MichaelHardy, thank you for editing, but I am still can't find better-writing program rather than this one s1.daumcdn.net/editor/fp/service_nc/pencil/…
                        – haqnatural
                        Jul 26 at 22:32










                      • Notice this code: int fraccos x + sin xcos x + sin x , dx. That's not really complicated. Do you need a program to do that?
                        – Michael Hardy
                        Jul 26 at 22:37










                      • yes, it is not, but many such formulas take a track of time to do so
                        – haqnatural
                        Jul 26 at 22:47
















                      • Writing int frac cos x + sin x cos x + sin x dx where int fraccos x + sin xcos x + sin x , dx would suffice doesn't serve a purpose and makes editing harder.
                        – Michael Hardy
                        Jul 26 at 22:26










                      • @MichaelHardy, thank you for editing, but I am still can't find better-writing program rather than this one s1.daumcdn.net/editor/fp/service_nc/pencil/…
                        – haqnatural
                        Jul 26 at 22:32










                      • Notice this code: int fraccos x + sin xcos x + sin x , dx. That's not really complicated. Do you need a program to do that?
                        – Michael Hardy
                        Jul 26 at 22:37










                      • yes, it is not, but many such formulas take a track of time to do so
                        – haqnatural
                        Jul 26 at 22:47















                      Writing int frac cos x + sin x cos x + sin x dx where int fraccos x + sin xcos x + sin x , dx would suffice doesn't serve a purpose and makes editing harder.
                      – Michael Hardy
                      Jul 26 at 22:26




                      Writing int frac cos x + sin x cos x + sin x dx where int fraccos x + sin xcos x + sin x , dx would suffice doesn't serve a purpose and makes editing harder.
                      – Michael Hardy
                      Jul 26 at 22:26












                      @MichaelHardy, thank you for editing, but I am still can't find better-writing program rather than this one s1.daumcdn.net/editor/fp/service_nc/pencil/…
                      – haqnatural
                      Jul 26 at 22:32




                      @MichaelHardy, thank you for editing, but I am still can't find better-writing program rather than this one s1.daumcdn.net/editor/fp/service_nc/pencil/…
                      – haqnatural
                      Jul 26 at 22:32












                      Notice this code: int fraccos x + sin xcos x + sin x , dx. That's not really complicated. Do you need a program to do that?
                      – Michael Hardy
                      Jul 26 at 22:37




                      Notice this code: int fraccos x + sin xcos x + sin x , dx. That's not really complicated. Do you need a program to do that?
                      – Michael Hardy
                      Jul 26 at 22:37












                      yes, it is not, but many such formulas take a track of time to do so
                      – haqnatural
                      Jul 26 at 22:47




                      yes, it is not, but many such formulas take a track of time to do so
                      – haqnatural
                      Jul 26 at 22:47










                      up vote
                      1
                      down vote













                      Notice that $$int fractanx1+tanx= int 1-frac11+tanx$$






                      share|cite|improve this answer

























                        up vote
                        1
                        down vote













                        Notice that $$int fractanx1+tanx= int 1-frac11+tanx$$






                        share|cite|improve this answer























                          up vote
                          1
                          down vote










                          up vote
                          1
                          down vote









                          Notice that $$int fractanx1+tanx= int 1-frac11+tanx$$






                          share|cite|improve this answer













                          Notice that $$int fractanx1+tanx= int 1-frac11+tanx$$







                          share|cite|improve this answer













                          share|cite|improve this answer



                          share|cite|improve this answer











                          answered Jul 26 at 21:21









                          idk

                          9431414




                          9431414




















                              up vote
                              1
                              down vote













                              Continuation from the Work in the Question
                              $$
                              beginalign
                              intfrac11+tan(x),mathrmdx
                              &=log(sin(x)+cos(x))+intfractan(x)1+tan(x),mathrmdxtag1\
                              &=frac12log(sin(x)+cos(x))+frac12intfrac1+tan(x)1+tan(x),mathrmdxtag2\
                              &=frac12(x+log(sin(x)+cos(x)))+Ctag3
                              endalign
                              $$
                              Explanation:

                              $(1)$: copied from the question

                              $(2)$: average the left and right sides of $(1)$

                              $(3)$: $int1,mathrmdx=x+C$




                              Another Approach



                              One can also try $u=tan(x)$ and partial fractions:
                              $$
                              beginalign
                              intfracmathrmdx1+tan(x)
                              &=intfracmathrmdtan(x)(1+tan(x))left(1+tan^2(x)right)tag4\
                              &=intfrac12left(frac11+u+frac1-u1+u^2right)mathrmdutag5\
                              &=frac12left(log(1+u)+tan^-1(u)-frac12logleft(1+u^2right)right)+Ctag6\
                              &=frac12(x+log(sin(x)+cos(x)))+Ctag7
                              endalign
                              $$
                              Explanation:

                              $(4)$: $mathrmdtan(x)=left(1+tan^2(x)right),mathrmdx$

                              $(5)$: $u=tan(x)$ and partial fractions

                              $(6)$: integrate

                              $(7)$: backsubstitute






                              share|cite|improve this answer



























                                up vote
                                1
                                down vote













                                Continuation from the Work in the Question
                                $$
                                beginalign
                                intfrac11+tan(x),mathrmdx
                                &=log(sin(x)+cos(x))+intfractan(x)1+tan(x),mathrmdxtag1\
                                &=frac12log(sin(x)+cos(x))+frac12intfrac1+tan(x)1+tan(x),mathrmdxtag2\
                                &=frac12(x+log(sin(x)+cos(x)))+Ctag3
                                endalign
                                $$
                                Explanation:

                                $(1)$: copied from the question

                                $(2)$: average the left and right sides of $(1)$

                                $(3)$: $int1,mathrmdx=x+C$




                                Another Approach



                                One can also try $u=tan(x)$ and partial fractions:
                                $$
                                beginalign
                                intfracmathrmdx1+tan(x)
                                &=intfracmathrmdtan(x)(1+tan(x))left(1+tan^2(x)right)tag4\
                                &=intfrac12left(frac11+u+frac1-u1+u^2right)mathrmdutag5\
                                &=frac12left(log(1+u)+tan^-1(u)-frac12logleft(1+u^2right)right)+Ctag6\
                                &=frac12(x+log(sin(x)+cos(x)))+Ctag7
                                endalign
                                $$
                                Explanation:

                                $(4)$: $mathrmdtan(x)=left(1+tan^2(x)right),mathrmdx$

                                $(5)$: $u=tan(x)$ and partial fractions

                                $(6)$: integrate

                                $(7)$: backsubstitute






                                share|cite|improve this answer

























                                  up vote
                                  1
                                  down vote










                                  up vote
                                  1
                                  down vote









                                  Continuation from the Work in the Question
                                  $$
                                  beginalign
                                  intfrac11+tan(x),mathrmdx
                                  &=log(sin(x)+cos(x))+intfractan(x)1+tan(x),mathrmdxtag1\
                                  &=frac12log(sin(x)+cos(x))+frac12intfrac1+tan(x)1+tan(x),mathrmdxtag2\
                                  &=frac12(x+log(sin(x)+cos(x)))+Ctag3
                                  endalign
                                  $$
                                  Explanation:

                                  $(1)$: copied from the question

                                  $(2)$: average the left and right sides of $(1)$

                                  $(3)$: $int1,mathrmdx=x+C$




                                  Another Approach



                                  One can also try $u=tan(x)$ and partial fractions:
                                  $$
                                  beginalign
                                  intfracmathrmdx1+tan(x)
                                  &=intfracmathrmdtan(x)(1+tan(x))left(1+tan^2(x)right)tag4\
                                  &=intfrac12left(frac11+u+frac1-u1+u^2right)mathrmdutag5\
                                  &=frac12left(log(1+u)+tan^-1(u)-frac12logleft(1+u^2right)right)+Ctag6\
                                  &=frac12(x+log(sin(x)+cos(x)))+Ctag7
                                  endalign
                                  $$
                                  Explanation:

                                  $(4)$: $mathrmdtan(x)=left(1+tan^2(x)right),mathrmdx$

                                  $(5)$: $u=tan(x)$ and partial fractions

                                  $(6)$: integrate

                                  $(7)$: backsubstitute






                                  share|cite|improve this answer















                                  Continuation from the Work in the Question
                                  $$
                                  beginalign
                                  intfrac11+tan(x),mathrmdx
                                  &=log(sin(x)+cos(x))+intfractan(x)1+tan(x),mathrmdxtag1\
                                  &=frac12log(sin(x)+cos(x))+frac12intfrac1+tan(x)1+tan(x),mathrmdxtag2\
                                  &=frac12(x+log(sin(x)+cos(x)))+Ctag3
                                  endalign
                                  $$
                                  Explanation:

                                  $(1)$: copied from the question

                                  $(2)$: average the left and right sides of $(1)$

                                  $(3)$: $int1,mathrmdx=x+C$




                                  Another Approach



                                  One can also try $u=tan(x)$ and partial fractions:
                                  $$
                                  beginalign
                                  intfracmathrmdx1+tan(x)
                                  &=intfracmathrmdtan(x)(1+tan(x))left(1+tan^2(x)right)tag4\
                                  &=intfrac12left(frac11+u+frac1-u1+u^2right)mathrmdutag5\
                                  &=frac12left(log(1+u)+tan^-1(u)-frac12logleft(1+u^2right)right)+Ctag6\
                                  &=frac12(x+log(sin(x)+cos(x)))+Ctag7
                                  endalign
                                  $$
                                  Explanation:

                                  $(4)$: $mathrmdtan(x)=left(1+tan^2(x)right),mathrmdx$

                                  $(5)$: $u=tan(x)$ and partial fractions

                                  $(6)$: integrate

                                  $(7)$: backsubstitute







                                  share|cite|improve this answer















                                  share|cite|improve this answer



                                  share|cite|improve this answer








                                  edited Jul 27 at 6:46


























                                  answered Jul 26 at 23:04









                                  robjohn♦

                                  258k25297612




                                  258k25297612




















                                      up vote
                                      0
                                      down vote













                                      $$ tan x=frac 2tan x/21+tan^2 x/2$$
                                      Solves your integral with $$u=tan x/2$$






                                      share|cite|improve this answer

























                                        up vote
                                        0
                                        down vote













                                        $$ tan x=frac 2tan x/21+tan^2 x/2$$
                                        Solves your integral with $$u=tan x/2$$






                                        share|cite|improve this answer























                                          up vote
                                          0
                                          down vote










                                          up vote
                                          0
                                          down vote









                                          $$ tan x=frac 2tan x/21+tan^2 x/2$$
                                          Solves your integral with $$u=tan x/2$$






                                          share|cite|improve this answer













                                          $$ tan x=frac 2tan x/21+tan^2 x/2$$
                                          Solves your integral with $$u=tan x/2$$







                                          share|cite|improve this answer













                                          share|cite|improve this answer



                                          share|cite|improve this answer











                                          answered Jul 26 at 21:03









                                          Mohammad Riazi-Kermani

                                          27.3k41851




                                          27.3k41851




















                                              up vote
                                              0
                                              down vote













                                              Notice that



                                              $$(log(sin xpmcos x))'=fraccos xmpsin xsin x+cos x$$



                                              Then



                                              $$(log(sin x+cos x)+log(sin x-cos x))'=(log(sin^2x-cos^2x))'=frac2cos xsin x+cos x.$$






                                              share|cite|improve this answer

























                                                up vote
                                                0
                                                down vote













                                                Notice that



                                                $$(log(sin xpmcos x))'=fraccos xmpsin xsin x+cos x$$



                                                Then



                                                $$(log(sin x+cos x)+log(sin x-cos x))'=(log(sin^2x-cos^2x))'=frac2cos xsin x+cos x.$$






                                                share|cite|improve this answer























                                                  up vote
                                                  0
                                                  down vote










                                                  up vote
                                                  0
                                                  down vote









                                                  Notice that



                                                  $$(log(sin xpmcos x))'=fraccos xmpsin xsin x+cos x$$



                                                  Then



                                                  $$(log(sin x+cos x)+log(sin x-cos x))'=(log(sin^2x-cos^2x))'=frac2cos xsin x+cos x.$$






                                                  share|cite|improve this answer













                                                  Notice that



                                                  $$(log(sin xpmcos x))'=fraccos xmpsin xsin x+cos x$$



                                                  Then



                                                  $$(log(sin x+cos x)+log(sin x-cos x))'=(log(sin^2x-cos^2x))'=frac2cos xsin x+cos x.$$







                                                  share|cite|improve this answer













                                                  share|cite|improve this answer



                                                  share|cite|improve this answer











                                                  answered Jul 26 at 21:15









                                                  Yves Daoust

                                                  110k665203




                                                  110k665203




















                                                      up vote
                                                      0
                                                      down vote













                                                      How about:
                                                      $$intfrac11+tan(x)dx= ln(sin(x)+cos(x)) +intfractan(x)1+tan(x)dx= ln(sin(x)+cos(x)) +intleft(1-frac11+tan(x)right)dx$$
                                                      $$therefore I= ln(sin(x)+cos(x))+x-I$$
                                                      $$therefore I=fracln(sin(x)+cos(x))+x2+C $$






                                                      share|cite|improve this answer

























                                                        up vote
                                                        0
                                                        down vote













                                                        How about:
                                                        $$intfrac11+tan(x)dx= ln(sin(x)+cos(x)) +intfractan(x)1+tan(x)dx= ln(sin(x)+cos(x)) +intleft(1-frac11+tan(x)right)dx$$
                                                        $$therefore I= ln(sin(x)+cos(x))+x-I$$
                                                        $$therefore I=fracln(sin(x)+cos(x))+x2+C $$






                                                        share|cite|improve this answer























                                                          up vote
                                                          0
                                                          down vote










                                                          up vote
                                                          0
                                                          down vote









                                                          How about:
                                                          $$intfrac11+tan(x)dx= ln(sin(x)+cos(x)) +intfractan(x)1+tan(x)dx= ln(sin(x)+cos(x)) +intleft(1-frac11+tan(x)right)dx$$
                                                          $$therefore I= ln(sin(x)+cos(x))+x-I$$
                                                          $$therefore I=fracln(sin(x)+cos(x))+x2+C $$






                                                          share|cite|improve this answer













                                                          How about:
                                                          $$intfrac11+tan(x)dx= ln(sin(x)+cos(x)) +intfractan(x)1+tan(x)dx= ln(sin(x)+cos(x)) +intleft(1-frac11+tan(x)right)dx$$
                                                          $$therefore I= ln(sin(x)+cos(x))+x-I$$
                                                          $$therefore I=fracln(sin(x)+cos(x))+x2+C $$







                                                          share|cite|improve this answer













                                                          share|cite|improve this answer



                                                          share|cite|improve this answer











                                                          answered Jul 26 at 21:21









                                                          Henry Lee

                                                          49210




                                                          49210




















                                                              up vote
                                                              0
                                                              down vote













                                                              If the numerator and denominator are both polynomials of trigonometric functions, then the substitution $y= tan(x/2)$ should always work. It is not necessarily the shortest solution, but it works.






                                                              share|cite|improve this answer

























                                                                up vote
                                                                0
                                                                down vote













                                                                If the numerator and denominator are both polynomials of trigonometric functions, then the substitution $y= tan(x/2)$ should always work. It is not necessarily the shortest solution, but it works.






                                                                share|cite|improve this answer























                                                                  up vote
                                                                  0
                                                                  down vote










                                                                  up vote
                                                                  0
                                                                  down vote









                                                                  If the numerator and denominator are both polynomials of trigonometric functions, then the substitution $y= tan(x/2)$ should always work. It is not necessarily the shortest solution, but it works.






                                                                  share|cite|improve this answer













                                                                  If the numerator and denominator are both polynomials of trigonometric functions, then the substitution $y= tan(x/2)$ should always work. It is not necessarily the shortest solution, but it works.







                                                                  share|cite|improve this answer













                                                                  share|cite|improve this answer



                                                                  share|cite|improve this answer











                                                                  answered Jul 26 at 22:15









                                                                  A. Pongrácz

                                                                  1,574115




                                                                  1,574115












                                                                      Comments

                                                                      Popular posts from this blog

                                                                      What is the equation of a 3D cone with generalised tilt?

                                                                      Color the edges and diagonals of a regular polygon

                                                                      Relationship between determinant of matrix and determinant of adjoint?