Show that $sum_n=1^infty 2^2nsin^4frac a2^n=a^2-sin^2a$
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
Show that $$sum_n=1^infty 2^2nsin^4frac a2^n=a^2-sin^2a$$
I am studying for an exam and I bumped into this question. It's really bothering me because I really don't have any clue what to do. Does it have anything to do with the Cauchy condensation? Can somebody help me I would really appreciate it
calculus sequences-and-series
add a comment |Â
up vote
1
down vote
favorite
Show that $$sum_n=1^infty 2^2nsin^4frac a2^n=a^2-sin^2a$$
I am studying for an exam and I bumped into this question. It's really bothering me because I really don't have any clue what to do. Does it have anything to do with the Cauchy condensation? Can somebody help me I would really appreciate it
calculus sequences-and-series
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Show that $$sum_n=1^infty 2^2nsin^4frac a2^n=a^2-sin^2a$$
I am studying for an exam and I bumped into this question. It's really bothering me because I really don't have any clue what to do. Does it have anything to do with the Cauchy condensation? Can somebody help me I would really appreciate it
calculus sequences-and-series
Show that $$sum_n=1^infty 2^2nsin^4frac a2^n=a^2-sin^2a$$
I am studying for an exam and I bumped into this question. It's really bothering me because I really don't have any clue what to do. Does it have anything to do with the Cauchy condensation? Can somebody help me I would really appreciate it
calculus sequences-and-series
edited Aug 6 at 11:45
asked Jul 27 at 16:06
J.Doe
84
84
add a comment |Â
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
3
down vote
accepted
Hint: Use the fact that $sin^4x=(sin^2 x)(sin^2 x)$ and a couple of trigonometric identities to reduce it to a telescopic series. Finally, use the identity $lim_xto0fracsin xx=1$ to obtain the desired value.
add a comment |Â
up vote
2
down vote
Using the hint that @Clayton gave this is what you get if you take the partial sum
$$2^2sin^2frac a2-sin^2a+2^4sin^2frac a2^2-2^2sin^2frac a2+ cdots+ 2^2nsin^2frac a2^n-2^2n-2sin^2frac a2^n-1=
2^2nsin^2frac a2^n-sin^2a$$
when you take the limit $$lim_nto inftyleft(2^2nsin^2frac a2^n-sin^2aright)=a^2-sin^2a$$
add a comment |Â
up vote
1
down vote
Solution
Notice that
beginalign*
2^2nsin^4frac a2^n&=2^2ncdotsin^2frac a2^ncdotsin^2frac a2^n\&=2^2ncdotsin^2frac a2^ncdotleft(1-cos^2frac a2^nright)\&=2^2ncdotsin^2frac a2^n-2^2ncdotsin^2frac a2^ncos^2frac a2^n\&=2^2ncdotsin^2frac a2^n-2^2n-2sin^2frac a2^n-1.
endalign*
Hence, the partial sum
beginalign*
&sum_n=1^mleft(2^2nsin^4frac a2^nright)\=&2^2sin^2frac a2-sin^2a+2^4sin^2frac a2^2-2^2sin^2frac a2+ cdots+ 2^2msin^2frac a2^m-2^2m-2sin^2frac a2^m-1\=&2^2msin^2frac a2^m-sin^2a.
endalign*
Let $m to infty$. We obtain $$sum_n=1^inftyleft(2^2nsin^4frac a2^nright)=lim_m to inftyleft(fracsindfrac a2^mdfraca2^mcdot aright)^2-sin^2 a=(1cdot a)^2-sin^2 a=a^2-sin^2 a.$$
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
accepted
Hint: Use the fact that $sin^4x=(sin^2 x)(sin^2 x)$ and a couple of trigonometric identities to reduce it to a telescopic series. Finally, use the identity $lim_xto0fracsin xx=1$ to obtain the desired value.
add a comment |Â
up vote
3
down vote
accepted
Hint: Use the fact that $sin^4x=(sin^2 x)(sin^2 x)$ and a couple of trigonometric identities to reduce it to a telescopic series. Finally, use the identity $lim_xto0fracsin xx=1$ to obtain the desired value.
add a comment |Â
up vote
3
down vote
accepted
up vote
3
down vote
accepted
Hint: Use the fact that $sin^4x=(sin^2 x)(sin^2 x)$ and a couple of trigonometric identities to reduce it to a telescopic series. Finally, use the identity $lim_xto0fracsin xx=1$ to obtain the desired value.
Hint: Use the fact that $sin^4x=(sin^2 x)(sin^2 x)$ and a couple of trigonometric identities to reduce it to a telescopic series. Finally, use the identity $lim_xto0fracsin xx=1$ to obtain the desired value.
edited Jul 27 at 16:24
answered Jul 27 at 16:16
Clayton
17.9k22882
17.9k22882
add a comment |Â
add a comment |Â
up vote
2
down vote
Using the hint that @Clayton gave this is what you get if you take the partial sum
$$2^2sin^2frac a2-sin^2a+2^4sin^2frac a2^2-2^2sin^2frac a2+ cdots+ 2^2nsin^2frac a2^n-2^2n-2sin^2frac a2^n-1=
2^2nsin^2frac a2^n-sin^2a$$
when you take the limit $$lim_nto inftyleft(2^2nsin^2frac a2^n-sin^2aright)=a^2-sin^2a$$
add a comment |Â
up vote
2
down vote
Using the hint that @Clayton gave this is what you get if you take the partial sum
$$2^2sin^2frac a2-sin^2a+2^4sin^2frac a2^2-2^2sin^2frac a2+ cdots+ 2^2nsin^2frac a2^n-2^2n-2sin^2frac a2^n-1=
2^2nsin^2frac a2^n-sin^2a$$
when you take the limit $$lim_nto inftyleft(2^2nsin^2frac a2^n-sin^2aright)=a^2-sin^2a$$
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Using the hint that @Clayton gave this is what you get if you take the partial sum
$$2^2sin^2frac a2-sin^2a+2^4sin^2frac a2^2-2^2sin^2frac a2+ cdots+ 2^2nsin^2frac a2^n-2^2n-2sin^2frac a2^n-1=
2^2nsin^2frac a2^n-sin^2a$$
when you take the limit $$lim_nto inftyleft(2^2nsin^2frac a2^n-sin^2aright)=a^2-sin^2a$$
Using the hint that @Clayton gave this is what you get if you take the partial sum
$$2^2sin^2frac a2-sin^2a+2^4sin^2frac a2^2-2^2sin^2frac a2+ cdots+ 2^2nsin^2frac a2^n-2^2n-2sin^2frac a2^n-1=
2^2nsin^2frac a2^n-sin^2a$$
when you take the limit $$lim_nto inftyleft(2^2nsin^2frac a2^n-sin^2aright)=a^2-sin^2a$$
answered Jul 27 at 16:58
J.Dane
159112
159112
add a comment |Â
add a comment |Â
up vote
1
down vote
Solution
Notice that
beginalign*
2^2nsin^4frac a2^n&=2^2ncdotsin^2frac a2^ncdotsin^2frac a2^n\&=2^2ncdotsin^2frac a2^ncdotleft(1-cos^2frac a2^nright)\&=2^2ncdotsin^2frac a2^n-2^2ncdotsin^2frac a2^ncos^2frac a2^n\&=2^2ncdotsin^2frac a2^n-2^2n-2sin^2frac a2^n-1.
endalign*
Hence, the partial sum
beginalign*
&sum_n=1^mleft(2^2nsin^4frac a2^nright)\=&2^2sin^2frac a2-sin^2a+2^4sin^2frac a2^2-2^2sin^2frac a2+ cdots+ 2^2msin^2frac a2^m-2^2m-2sin^2frac a2^m-1\=&2^2msin^2frac a2^m-sin^2a.
endalign*
Let $m to infty$. We obtain $$sum_n=1^inftyleft(2^2nsin^4frac a2^nright)=lim_m to inftyleft(fracsindfrac a2^mdfraca2^mcdot aright)^2-sin^2 a=(1cdot a)^2-sin^2 a=a^2-sin^2 a.$$
add a comment |Â
up vote
1
down vote
Solution
Notice that
beginalign*
2^2nsin^4frac a2^n&=2^2ncdotsin^2frac a2^ncdotsin^2frac a2^n\&=2^2ncdotsin^2frac a2^ncdotleft(1-cos^2frac a2^nright)\&=2^2ncdotsin^2frac a2^n-2^2ncdotsin^2frac a2^ncos^2frac a2^n\&=2^2ncdotsin^2frac a2^n-2^2n-2sin^2frac a2^n-1.
endalign*
Hence, the partial sum
beginalign*
&sum_n=1^mleft(2^2nsin^4frac a2^nright)\=&2^2sin^2frac a2-sin^2a+2^4sin^2frac a2^2-2^2sin^2frac a2+ cdots+ 2^2msin^2frac a2^m-2^2m-2sin^2frac a2^m-1\=&2^2msin^2frac a2^m-sin^2a.
endalign*
Let $m to infty$. We obtain $$sum_n=1^inftyleft(2^2nsin^4frac a2^nright)=lim_m to inftyleft(fracsindfrac a2^mdfraca2^mcdot aright)^2-sin^2 a=(1cdot a)^2-sin^2 a=a^2-sin^2 a.$$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Solution
Notice that
beginalign*
2^2nsin^4frac a2^n&=2^2ncdotsin^2frac a2^ncdotsin^2frac a2^n\&=2^2ncdotsin^2frac a2^ncdotleft(1-cos^2frac a2^nright)\&=2^2ncdotsin^2frac a2^n-2^2ncdotsin^2frac a2^ncos^2frac a2^n\&=2^2ncdotsin^2frac a2^n-2^2n-2sin^2frac a2^n-1.
endalign*
Hence, the partial sum
beginalign*
&sum_n=1^mleft(2^2nsin^4frac a2^nright)\=&2^2sin^2frac a2-sin^2a+2^4sin^2frac a2^2-2^2sin^2frac a2+ cdots+ 2^2msin^2frac a2^m-2^2m-2sin^2frac a2^m-1\=&2^2msin^2frac a2^m-sin^2a.
endalign*
Let $m to infty$. We obtain $$sum_n=1^inftyleft(2^2nsin^4frac a2^nright)=lim_m to inftyleft(fracsindfrac a2^mdfraca2^mcdot aright)^2-sin^2 a=(1cdot a)^2-sin^2 a=a^2-sin^2 a.$$
Solution
Notice that
beginalign*
2^2nsin^4frac a2^n&=2^2ncdotsin^2frac a2^ncdotsin^2frac a2^n\&=2^2ncdotsin^2frac a2^ncdotleft(1-cos^2frac a2^nright)\&=2^2ncdotsin^2frac a2^n-2^2ncdotsin^2frac a2^ncos^2frac a2^n\&=2^2ncdotsin^2frac a2^n-2^2n-2sin^2frac a2^n-1.
endalign*
Hence, the partial sum
beginalign*
&sum_n=1^mleft(2^2nsin^4frac a2^nright)\=&2^2sin^2frac a2-sin^2a+2^4sin^2frac a2^2-2^2sin^2frac a2+ cdots+ 2^2msin^2frac a2^m-2^2m-2sin^2frac a2^m-1\=&2^2msin^2frac a2^m-sin^2a.
endalign*
Let $m to infty$. We obtain $$sum_n=1^inftyleft(2^2nsin^4frac a2^nright)=lim_m to inftyleft(fracsindfrac a2^mdfraca2^mcdot aright)^2-sin^2 a=(1cdot a)^2-sin^2 a=a^2-sin^2 a.$$
answered Jul 27 at 17:33
mengdie1982
2,827216
2,827216
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2864538%2fshow-that-sum-n-1-infty-22n-sin4-frac-a2n-a2-sin2a%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password