Show that $sum_n=1^infty 2^2nsin^4frac a2^n=a^2-sin^2a$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite
2












Show that $$sum_n=1^infty 2^2nsin^4frac a2^n=a^2-sin^2a$$



I am studying for an exam and I bumped into this question. It's really bothering me because I really don't have any clue what to do. Does it have anything to do with the Cauchy condensation? Can somebody help me I would really appreciate it







share|cite|improve this question

























    up vote
    1
    down vote

    favorite
    2












    Show that $$sum_n=1^infty 2^2nsin^4frac a2^n=a^2-sin^2a$$



    I am studying for an exam and I bumped into this question. It's really bothering me because I really don't have any clue what to do. Does it have anything to do with the Cauchy condensation? Can somebody help me I would really appreciate it







    share|cite|improve this question























      up vote
      1
      down vote

      favorite
      2









      up vote
      1
      down vote

      favorite
      2






      2





      Show that $$sum_n=1^infty 2^2nsin^4frac a2^n=a^2-sin^2a$$



      I am studying for an exam and I bumped into this question. It's really bothering me because I really don't have any clue what to do. Does it have anything to do with the Cauchy condensation? Can somebody help me I would really appreciate it







      share|cite|improve this question













      Show that $$sum_n=1^infty 2^2nsin^4frac a2^n=a^2-sin^2a$$



      I am studying for an exam and I bumped into this question. It's really bothering me because I really don't have any clue what to do. Does it have anything to do with the Cauchy condensation? Can somebody help me I would really appreciate it









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Aug 6 at 11:45
























      asked Jul 27 at 16:06









      J.Doe

      84




      84




















          3 Answers
          3






          active

          oldest

          votes

















          up vote
          3
          down vote



          accepted










          Hint: Use the fact that $sin^4x=(sin^2 x)(sin^2 x)$ and a couple of trigonometric identities to reduce it to a telescopic series. Finally, use the identity $lim_xto0fracsin xx=1$ to obtain the desired value.






          share|cite|improve this answer






























            up vote
            2
            down vote













            Using the hint that @Clayton gave this is what you get if you take the partial sum



            $$2^2sin^2frac a2-sin^2a+2^4sin^2frac a2^2-2^2sin^2frac a2+ cdots+ 2^2nsin^2frac a2^n-2^2n-2sin^2frac a2^n-1=
            2^2nsin^2frac a2^n-sin^2a$$



            when you take the limit $$lim_nto inftyleft(2^2nsin^2frac a2^n-sin^2aright)=a^2-sin^2a$$






            share|cite|improve this answer




























              up vote
              1
              down vote













              Solution



              Notice that
              beginalign*
              2^2nsin^4frac a2^n&=2^2ncdotsin^2frac a2^ncdotsin^2frac a2^n\&=2^2ncdotsin^2frac a2^ncdotleft(1-cos^2frac a2^nright)\&=2^2ncdotsin^2frac a2^n-2^2ncdotsin^2frac a2^ncos^2frac a2^n\&=2^2ncdotsin^2frac a2^n-2^2n-2sin^2frac a2^n-1.
              endalign*



              Hence, the partial sum
              beginalign*
              &sum_n=1^mleft(2^2nsin^4frac a2^nright)\=&2^2sin^2frac a2-sin^2a+2^4sin^2frac a2^2-2^2sin^2frac a2+ cdots+ 2^2msin^2frac a2^m-2^2m-2sin^2frac a2^m-1\=&2^2msin^2frac a2^m-sin^2a.
              endalign*



              Let $m to infty$. We obtain $$sum_n=1^inftyleft(2^2nsin^4frac a2^nright)=lim_m to inftyleft(fracsindfrac a2^mdfraca2^mcdot aright)^2-sin^2 a=(1cdot a)^2-sin^2 a=a^2-sin^2 a.$$






              share|cite|improve this answer





















                Your Answer




                StackExchange.ifUsing("editor", function ()
                return StackExchange.using("mathjaxEditing", function ()
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                );
                );
                , "mathjax-editing");

                StackExchange.ready(function()
                var channelOptions =
                tags: "".split(" "),
                id: "69"
                ;
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function()
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled)
                StackExchange.using("snippets", function()
                createEditor();
                );

                else
                createEditor();

                );

                function createEditor()
                StackExchange.prepareEditor(
                heartbeatType: 'answer',
                convertImagesToLinks: true,
                noModals: false,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                );



                );








                 

                draft saved


                draft discarded


















                StackExchange.ready(
                function ()
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2864538%2fshow-that-sum-n-1-infty-22n-sin4-frac-a2n-a2-sin2a%23new-answer', 'question_page');

                );

                Post as a guest






























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes








                up vote
                3
                down vote



                accepted










                Hint: Use the fact that $sin^4x=(sin^2 x)(sin^2 x)$ and a couple of trigonometric identities to reduce it to a telescopic series. Finally, use the identity $lim_xto0fracsin xx=1$ to obtain the desired value.






                share|cite|improve this answer



























                  up vote
                  3
                  down vote



                  accepted










                  Hint: Use the fact that $sin^4x=(sin^2 x)(sin^2 x)$ and a couple of trigonometric identities to reduce it to a telescopic series. Finally, use the identity $lim_xto0fracsin xx=1$ to obtain the desired value.






                  share|cite|improve this answer

























                    up vote
                    3
                    down vote



                    accepted







                    up vote
                    3
                    down vote



                    accepted






                    Hint: Use the fact that $sin^4x=(sin^2 x)(sin^2 x)$ and a couple of trigonometric identities to reduce it to a telescopic series. Finally, use the identity $lim_xto0fracsin xx=1$ to obtain the desired value.






                    share|cite|improve this answer















                    Hint: Use the fact that $sin^4x=(sin^2 x)(sin^2 x)$ and a couple of trigonometric identities to reduce it to a telescopic series. Finally, use the identity $lim_xto0fracsin xx=1$ to obtain the desired value.







                    share|cite|improve this answer















                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Jul 27 at 16:24


























                    answered Jul 27 at 16:16









                    Clayton

                    17.9k22882




                    17.9k22882




















                        up vote
                        2
                        down vote













                        Using the hint that @Clayton gave this is what you get if you take the partial sum



                        $$2^2sin^2frac a2-sin^2a+2^4sin^2frac a2^2-2^2sin^2frac a2+ cdots+ 2^2nsin^2frac a2^n-2^2n-2sin^2frac a2^n-1=
                        2^2nsin^2frac a2^n-sin^2a$$



                        when you take the limit $$lim_nto inftyleft(2^2nsin^2frac a2^n-sin^2aright)=a^2-sin^2a$$






                        share|cite|improve this answer

























                          up vote
                          2
                          down vote













                          Using the hint that @Clayton gave this is what you get if you take the partial sum



                          $$2^2sin^2frac a2-sin^2a+2^4sin^2frac a2^2-2^2sin^2frac a2+ cdots+ 2^2nsin^2frac a2^n-2^2n-2sin^2frac a2^n-1=
                          2^2nsin^2frac a2^n-sin^2a$$



                          when you take the limit $$lim_nto inftyleft(2^2nsin^2frac a2^n-sin^2aright)=a^2-sin^2a$$






                          share|cite|improve this answer























                            up vote
                            2
                            down vote










                            up vote
                            2
                            down vote









                            Using the hint that @Clayton gave this is what you get if you take the partial sum



                            $$2^2sin^2frac a2-sin^2a+2^4sin^2frac a2^2-2^2sin^2frac a2+ cdots+ 2^2nsin^2frac a2^n-2^2n-2sin^2frac a2^n-1=
                            2^2nsin^2frac a2^n-sin^2a$$



                            when you take the limit $$lim_nto inftyleft(2^2nsin^2frac a2^n-sin^2aright)=a^2-sin^2a$$






                            share|cite|improve this answer













                            Using the hint that @Clayton gave this is what you get if you take the partial sum



                            $$2^2sin^2frac a2-sin^2a+2^4sin^2frac a2^2-2^2sin^2frac a2+ cdots+ 2^2nsin^2frac a2^n-2^2n-2sin^2frac a2^n-1=
                            2^2nsin^2frac a2^n-sin^2a$$



                            when you take the limit $$lim_nto inftyleft(2^2nsin^2frac a2^n-sin^2aright)=a^2-sin^2a$$







                            share|cite|improve this answer













                            share|cite|improve this answer



                            share|cite|improve this answer











                            answered Jul 27 at 16:58









                            J.Dane

                            159112




                            159112




















                                up vote
                                1
                                down vote













                                Solution



                                Notice that
                                beginalign*
                                2^2nsin^4frac a2^n&=2^2ncdotsin^2frac a2^ncdotsin^2frac a2^n\&=2^2ncdotsin^2frac a2^ncdotleft(1-cos^2frac a2^nright)\&=2^2ncdotsin^2frac a2^n-2^2ncdotsin^2frac a2^ncos^2frac a2^n\&=2^2ncdotsin^2frac a2^n-2^2n-2sin^2frac a2^n-1.
                                endalign*



                                Hence, the partial sum
                                beginalign*
                                &sum_n=1^mleft(2^2nsin^4frac a2^nright)\=&2^2sin^2frac a2-sin^2a+2^4sin^2frac a2^2-2^2sin^2frac a2+ cdots+ 2^2msin^2frac a2^m-2^2m-2sin^2frac a2^m-1\=&2^2msin^2frac a2^m-sin^2a.
                                endalign*



                                Let $m to infty$. We obtain $$sum_n=1^inftyleft(2^2nsin^4frac a2^nright)=lim_m to inftyleft(fracsindfrac a2^mdfraca2^mcdot aright)^2-sin^2 a=(1cdot a)^2-sin^2 a=a^2-sin^2 a.$$






                                share|cite|improve this answer

























                                  up vote
                                  1
                                  down vote













                                  Solution



                                  Notice that
                                  beginalign*
                                  2^2nsin^4frac a2^n&=2^2ncdotsin^2frac a2^ncdotsin^2frac a2^n\&=2^2ncdotsin^2frac a2^ncdotleft(1-cos^2frac a2^nright)\&=2^2ncdotsin^2frac a2^n-2^2ncdotsin^2frac a2^ncos^2frac a2^n\&=2^2ncdotsin^2frac a2^n-2^2n-2sin^2frac a2^n-1.
                                  endalign*



                                  Hence, the partial sum
                                  beginalign*
                                  &sum_n=1^mleft(2^2nsin^4frac a2^nright)\=&2^2sin^2frac a2-sin^2a+2^4sin^2frac a2^2-2^2sin^2frac a2+ cdots+ 2^2msin^2frac a2^m-2^2m-2sin^2frac a2^m-1\=&2^2msin^2frac a2^m-sin^2a.
                                  endalign*



                                  Let $m to infty$. We obtain $$sum_n=1^inftyleft(2^2nsin^4frac a2^nright)=lim_m to inftyleft(fracsindfrac a2^mdfraca2^mcdot aright)^2-sin^2 a=(1cdot a)^2-sin^2 a=a^2-sin^2 a.$$






                                  share|cite|improve this answer























                                    up vote
                                    1
                                    down vote










                                    up vote
                                    1
                                    down vote









                                    Solution



                                    Notice that
                                    beginalign*
                                    2^2nsin^4frac a2^n&=2^2ncdotsin^2frac a2^ncdotsin^2frac a2^n\&=2^2ncdotsin^2frac a2^ncdotleft(1-cos^2frac a2^nright)\&=2^2ncdotsin^2frac a2^n-2^2ncdotsin^2frac a2^ncos^2frac a2^n\&=2^2ncdotsin^2frac a2^n-2^2n-2sin^2frac a2^n-1.
                                    endalign*



                                    Hence, the partial sum
                                    beginalign*
                                    &sum_n=1^mleft(2^2nsin^4frac a2^nright)\=&2^2sin^2frac a2-sin^2a+2^4sin^2frac a2^2-2^2sin^2frac a2+ cdots+ 2^2msin^2frac a2^m-2^2m-2sin^2frac a2^m-1\=&2^2msin^2frac a2^m-sin^2a.
                                    endalign*



                                    Let $m to infty$. We obtain $$sum_n=1^inftyleft(2^2nsin^4frac a2^nright)=lim_m to inftyleft(fracsindfrac a2^mdfraca2^mcdot aright)^2-sin^2 a=(1cdot a)^2-sin^2 a=a^2-sin^2 a.$$






                                    share|cite|improve this answer













                                    Solution



                                    Notice that
                                    beginalign*
                                    2^2nsin^4frac a2^n&=2^2ncdotsin^2frac a2^ncdotsin^2frac a2^n\&=2^2ncdotsin^2frac a2^ncdotleft(1-cos^2frac a2^nright)\&=2^2ncdotsin^2frac a2^n-2^2ncdotsin^2frac a2^ncos^2frac a2^n\&=2^2ncdotsin^2frac a2^n-2^2n-2sin^2frac a2^n-1.
                                    endalign*



                                    Hence, the partial sum
                                    beginalign*
                                    &sum_n=1^mleft(2^2nsin^4frac a2^nright)\=&2^2sin^2frac a2-sin^2a+2^4sin^2frac a2^2-2^2sin^2frac a2+ cdots+ 2^2msin^2frac a2^m-2^2m-2sin^2frac a2^m-1\=&2^2msin^2frac a2^m-sin^2a.
                                    endalign*



                                    Let $m to infty$. We obtain $$sum_n=1^inftyleft(2^2nsin^4frac a2^nright)=lim_m to inftyleft(fracsindfrac a2^mdfraca2^mcdot aright)^2-sin^2 a=(1cdot a)^2-sin^2 a=a^2-sin^2 a.$$







                                    share|cite|improve this answer













                                    share|cite|improve this answer



                                    share|cite|improve this answer











                                    answered Jul 27 at 17:33









                                    mengdie1982

                                    2,827216




                                    2,827216






















                                         

                                        draft saved


                                        draft discarded


























                                         


                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function ()
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2864538%2fshow-that-sum-n-1-infty-22n-sin4-frac-a2n-a2-sin2a%23new-answer', 'question_page');

                                        );

                                        Post as a guest













































































                                        Comments

                                        Popular posts from this blog

                                        What is the equation of a 3D cone with generalised tilt?

                                        Color the edges and diagonals of a regular polygon

                                        Relationship between determinant of matrix and determinant of adjoint?