Where did I go wrong in my working? - integration via substitution $int_0^frac12ln3frac1e^x+e^-xdx$.
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
Here is the question:
Using the substitution $u=e^x$, find the exact value of
$int_0^frac12ln3dfrac1e^x+e^-xdx$
The actual to this answer is $dfracpi12$, and in the official working out it seems they took the arctan of two numbers:
(official working)
This surprised me because I've never seen arctan used in these questions before so I didn't even think about doing that: could anyone also explain when to take the arctan in these sort of questions please?
My working:
$u=e^x, x=ln(u)$
$int_0^frac12ln3dfrac1e^x+e^-xdx = int_0^frac12ln3dfrac1u+u^-1dx $
$fracdudx = e^x therefore fracdue^x=dx$
$int_1^sqrt3frac1u^2+1 du = int_1^sqrt3(u^2+1)^-1 du$
$int_1^sqrt3(u^-2+1) du = [-u^-1+u]_1^sqrt3$
$(-sqrt3^-1+sqrt3) - (-1 + 1) = frac2sqrt3$
calculus integration derivatives proof-verification substitution
add a comment |Â
up vote
2
down vote
favorite
Here is the question:
Using the substitution $u=e^x$, find the exact value of
$int_0^frac12ln3dfrac1e^x+e^-xdx$
The actual to this answer is $dfracpi12$, and in the official working out it seems they took the arctan of two numbers:
(official working)
This surprised me because I've never seen arctan used in these questions before so I didn't even think about doing that: could anyone also explain when to take the arctan in these sort of questions please?
My working:
$u=e^x, x=ln(u)$
$int_0^frac12ln3dfrac1e^x+e^-xdx = int_0^frac12ln3dfrac1u+u^-1dx $
$fracdudx = e^x therefore fracdue^x=dx$
$int_1^sqrt3frac1u^2+1 du = int_1^sqrt3(u^2+1)^-1 du$
$int_1^sqrt3(u^-2+1) du = [-u^-1+u]_1^sqrt3$
$(-sqrt3^-1+sqrt3) - (-1 + 1) = frac2sqrt3$
calculus integration derivatives proof-verification substitution
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Here is the question:
Using the substitution $u=e^x$, find the exact value of
$int_0^frac12ln3dfrac1e^x+e^-xdx$
The actual to this answer is $dfracpi12$, and in the official working out it seems they took the arctan of two numbers:
(official working)
This surprised me because I've never seen arctan used in these questions before so I didn't even think about doing that: could anyone also explain when to take the arctan in these sort of questions please?
My working:
$u=e^x, x=ln(u)$
$int_0^frac12ln3dfrac1e^x+e^-xdx = int_0^frac12ln3dfrac1u+u^-1dx $
$fracdudx = e^x therefore fracdue^x=dx$
$int_1^sqrt3frac1u^2+1 du = int_1^sqrt3(u^2+1)^-1 du$
$int_1^sqrt3(u^-2+1) du = [-u^-1+u]_1^sqrt3$
$(-sqrt3^-1+sqrt3) - (-1 + 1) = frac2sqrt3$
calculus integration derivatives proof-verification substitution
Here is the question:
Using the substitution $u=e^x$, find the exact value of
$int_0^frac12ln3dfrac1e^x+e^-xdx$
The actual to this answer is $dfracpi12$, and in the official working out it seems they took the arctan of two numbers:
(official working)
This surprised me because I've never seen arctan used in these questions before so I didn't even think about doing that: could anyone also explain when to take the arctan in these sort of questions please?
My working:
$u=e^x, x=ln(u)$
$int_0^frac12ln3dfrac1e^x+e^-xdx = int_0^frac12ln3dfrac1u+u^-1dx $
$fracdudx = e^x therefore fracdue^x=dx$
$int_1^sqrt3frac1u^2+1 du = int_1^sqrt3(u^2+1)^-1 du$
$int_1^sqrt3(u^-2+1) du = [-u^-1+u]_1^sqrt3$
$(-sqrt3^-1+sqrt3) - (-1 + 1) = frac2sqrt3$
calculus integration derivatives proof-verification substitution
edited Jul 27 at 2:56


Nosrati
19.2k41544
19.2k41544
asked Jul 27 at 2:21
Cheks Nweze
627
627
add a comment |Â
add a comment |Â
4 Answers
4
active
oldest
votes
up vote
5
down vote
accepted
Hint: See that $(u^2+1)^-1neq u^-2+1$, also
$$intdfrac1u^2+1du=arctan u+C$$
Oh right, okay - so does this mean that any expression of the form $int_^ frac1u du$ can be rewritten as $arctan(u)$?
– Cheks Nweze
Jul 27 at 13:52
Also, why do we use $arctan$ and not $arccos$ or $arcsin$?
– Cheks Nweze
Jul 27 at 14:23
add a comment |Â
up vote
3
down vote
HINT:
$$intfrac1u^2+1,du=arctan(u)+Cne -frac1u + u +C$$
add a comment |Â
up vote
1
down vote
$$I=int_0^frac12ln(3)frac1e^x+e^-xdx=int_0^frac12ln(3)frac1e^x+frac1e^xdx=int_0^frac12ln(3)frace^x(e^x)^2+1dx$$
$u=e^x,,fracdudx=e^x$
$$therefore I=int_1^sqrt3frac1u^2+1du=arctan(sqrt3)-arctan(1)=fracpi3-fracpi4=fracpi12$$
add a comment |Â
up vote
0
down vote
Hint: Try multiplying the numerator and denominator by $e^x$ and see what happens. Then make the appropiate substitution after doing that.
Hope this really helps! :)
add a comment |Â
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
5
down vote
accepted
Hint: See that $(u^2+1)^-1neq u^-2+1$, also
$$intdfrac1u^2+1du=arctan u+C$$
Oh right, okay - so does this mean that any expression of the form $int_^ frac1u du$ can be rewritten as $arctan(u)$?
– Cheks Nweze
Jul 27 at 13:52
Also, why do we use $arctan$ and not $arccos$ or $arcsin$?
– Cheks Nweze
Jul 27 at 14:23
add a comment |Â
up vote
5
down vote
accepted
Hint: See that $(u^2+1)^-1neq u^-2+1$, also
$$intdfrac1u^2+1du=arctan u+C$$
Oh right, okay - so does this mean that any expression of the form $int_^ frac1u du$ can be rewritten as $arctan(u)$?
– Cheks Nweze
Jul 27 at 13:52
Also, why do we use $arctan$ and not $arccos$ or $arcsin$?
– Cheks Nweze
Jul 27 at 14:23
add a comment |Â
up vote
5
down vote
accepted
up vote
5
down vote
accepted
Hint: See that $(u^2+1)^-1neq u^-2+1$, also
$$intdfrac1u^2+1du=arctan u+C$$
Hint: See that $(u^2+1)^-1neq u^-2+1$, also
$$intdfrac1u^2+1du=arctan u+C$$
answered Jul 27 at 2:26


Nosrati
19.2k41544
19.2k41544
Oh right, okay - so does this mean that any expression of the form $int_^ frac1u du$ can be rewritten as $arctan(u)$?
– Cheks Nweze
Jul 27 at 13:52
Also, why do we use $arctan$ and not $arccos$ or $arcsin$?
– Cheks Nweze
Jul 27 at 14:23
add a comment |Â
Oh right, okay - so does this mean that any expression of the form $int_^ frac1u du$ can be rewritten as $arctan(u)$?
– Cheks Nweze
Jul 27 at 13:52
Also, why do we use $arctan$ and not $arccos$ or $arcsin$?
– Cheks Nweze
Jul 27 at 14:23
Oh right, okay - so does this mean that any expression of the form $int_^ frac1u du$ can be rewritten as $arctan(u)$?
– Cheks Nweze
Jul 27 at 13:52
Oh right, okay - so does this mean that any expression of the form $int_^ frac1u du$ can be rewritten as $arctan(u)$?
– Cheks Nweze
Jul 27 at 13:52
Also, why do we use $arctan$ and not $arccos$ or $arcsin$?
– Cheks Nweze
Jul 27 at 14:23
Also, why do we use $arctan$ and not $arccos$ or $arcsin$?
– Cheks Nweze
Jul 27 at 14:23
add a comment |Â
up vote
3
down vote
HINT:
$$intfrac1u^2+1,du=arctan(u)+Cne -frac1u + u +C$$
add a comment |Â
up vote
3
down vote
HINT:
$$intfrac1u^2+1,du=arctan(u)+Cne -frac1u + u +C$$
add a comment |Â
up vote
3
down vote
up vote
3
down vote
HINT:
$$intfrac1u^2+1,du=arctan(u)+Cne -frac1u + u +C$$
HINT:
$$intfrac1u^2+1,du=arctan(u)+Cne -frac1u + u +C$$
answered Jul 27 at 2:26
Mark Viola
126k1172167
126k1172167
add a comment |Â
add a comment |Â
up vote
1
down vote
$$I=int_0^frac12ln(3)frac1e^x+e^-xdx=int_0^frac12ln(3)frac1e^x+frac1e^xdx=int_0^frac12ln(3)frace^x(e^x)^2+1dx$$
$u=e^x,,fracdudx=e^x$
$$therefore I=int_1^sqrt3frac1u^2+1du=arctan(sqrt3)-arctan(1)=fracpi3-fracpi4=fracpi12$$
add a comment |Â
up vote
1
down vote
$$I=int_0^frac12ln(3)frac1e^x+e^-xdx=int_0^frac12ln(3)frac1e^x+frac1e^xdx=int_0^frac12ln(3)frace^x(e^x)^2+1dx$$
$u=e^x,,fracdudx=e^x$
$$therefore I=int_1^sqrt3frac1u^2+1du=arctan(sqrt3)-arctan(1)=fracpi3-fracpi4=fracpi12$$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
$$I=int_0^frac12ln(3)frac1e^x+e^-xdx=int_0^frac12ln(3)frac1e^x+frac1e^xdx=int_0^frac12ln(3)frace^x(e^x)^2+1dx$$
$u=e^x,,fracdudx=e^x$
$$therefore I=int_1^sqrt3frac1u^2+1du=arctan(sqrt3)-arctan(1)=fracpi3-fracpi4=fracpi12$$
$$I=int_0^frac12ln(3)frac1e^x+e^-xdx=int_0^frac12ln(3)frac1e^x+frac1e^xdx=int_0^frac12ln(3)frace^x(e^x)^2+1dx$$
$u=e^x,,fracdudx=e^x$
$$therefore I=int_1^sqrt3frac1u^2+1du=arctan(sqrt3)-arctan(1)=fracpi3-fracpi4=fracpi12$$
answered Jul 27 at 11:15
Henry Lee
49210
49210
add a comment |Â
add a comment |Â
up vote
0
down vote
Hint: Try multiplying the numerator and denominator by $e^x$ and see what happens. Then make the appropiate substitution after doing that.
Hope this really helps! :)
add a comment |Â
up vote
0
down vote
Hint: Try multiplying the numerator and denominator by $e^x$ and see what happens. Then make the appropiate substitution after doing that.
Hope this really helps! :)
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Hint: Try multiplying the numerator and denominator by $e^x$ and see what happens. Then make the appropiate substitution after doing that.
Hope this really helps! :)
Hint: Try multiplying the numerator and denominator by $e^x$ and see what happens. Then make the appropiate substitution after doing that.
Hope this really helps! :)
answered Jul 27 at 2:26
user573497
2009
2009
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2863986%2fwhere-did-i-go-wrong-in-my-working-integration-via-substitution-int-0-f%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password