Work out $int_0^pi/2cos^2n(x)lnsin(x) dx$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
3
down vote

favorite












$$F(n)=large int_0^pi/2cos^2n(x)lnsin(x)mathrm dx$$



$$cos^2n(x)=frac12^2n2n choose n+frac12^2n-1sum_k=0^n-12n choose kcosleft[2left(n-kright)xright]$$



$$I=frac12^2n2n choose nint_0^pi/2lnsin(x)mathrm dx+frac12^2n-1sum_k=0^n-12n choose kint_0^pi/2cosleft[2left(n-kright)xright]lnsin(x)mathrm dx$$



$$I=-fracpi ln(2)2^2n+12n choose n+frac12^2n-1sum_k=0^n-12n choose kint_0^pi/2cosleft[2left(n-kright)xright]lnsin(x)mathrm dx$$



I can't continue.



I would like to evaluate $F(n)$







share|cite|improve this question



















  • Mathematica gives (for $n>-1/2$): $-fracsqrtpi Gamma left(n+frac12right) left(H_n+log (4)right)4 Gamma (n+1)$.
    – David G. Stork
    Jul 27 at 8:11














up vote
3
down vote

favorite












$$F(n)=large int_0^pi/2cos^2n(x)lnsin(x)mathrm dx$$



$$cos^2n(x)=frac12^2n2n choose n+frac12^2n-1sum_k=0^n-12n choose kcosleft[2left(n-kright)xright]$$



$$I=frac12^2n2n choose nint_0^pi/2lnsin(x)mathrm dx+frac12^2n-1sum_k=0^n-12n choose kint_0^pi/2cosleft[2left(n-kright)xright]lnsin(x)mathrm dx$$



$$I=-fracpi ln(2)2^2n+12n choose n+frac12^2n-1sum_k=0^n-12n choose kint_0^pi/2cosleft[2left(n-kright)xright]lnsin(x)mathrm dx$$



I can't continue.



I would like to evaluate $F(n)$







share|cite|improve this question



















  • Mathematica gives (for $n>-1/2$): $-fracsqrtpi Gamma left(n+frac12right) left(H_n+log (4)right)4 Gamma (n+1)$.
    – David G. Stork
    Jul 27 at 8:11












up vote
3
down vote

favorite









up vote
3
down vote

favorite











$$F(n)=large int_0^pi/2cos^2n(x)lnsin(x)mathrm dx$$



$$cos^2n(x)=frac12^2n2n choose n+frac12^2n-1sum_k=0^n-12n choose kcosleft[2left(n-kright)xright]$$



$$I=frac12^2n2n choose nint_0^pi/2lnsin(x)mathrm dx+frac12^2n-1sum_k=0^n-12n choose kint_0^pi/2cosleft[2left(n-kright)xright]lnsin(x)mathrm dx$$



$$I=-fracpi ln(2)2^2n+12n choose n+frac12^2n-1sum_k=0^n-12n choose kint_0^pi/2cosleft[2left(n-kright)xright]lnsin(x)mathrm dx$$



I can't continue.



I would like to evaluate $F(n)$







share|cite|improve this question











$$F(n)=large int_0^pi/2cos^2n(x)lnsin(x)mathrm dx$$



$$cos^2n(x)=frac12^2n2n choose n+frac12^2n-1sum_k=0^n-12n choose kcosleft[2left(n-kright)xright]$$



$$I=frac12^2n2n choose nint_0^pi/2lnsin(x)mathrm dx+frac12^2n-1sum_k=0^n-12n choose kint_0^pi/2cosleft[2left(n-kright)xright]lnsin(x)mathrm dx$$



$$I=-fracpi ln(2)2^2n+12n choose n+frac12^2n-1sum_k=0^n-12n choose kint_0^pi/2cosleft[2left(n-kright)xright]lnsin(x)mathrm dx$$



I can't continue.



I would like to evaluate $F(n)$









share|cite|improve this question










share|cite|improve this question




share|cite|improve this question









asked Jul 27 at 7:53









Bonjour

51110




51110











  • Mathematica gives (for $n>-1/2$): $-fracsqrtpi Gamma left(n+frac12right) left(H_n+log (4)right)4 Gamma (n+1)$.
    – David G. Stork
    Jul 27 at 8:11
















  • Mathematica gives (for $n>-1/2$): $-fracsqrtpi Gamma left(n+frac12right) left(H_n+log (4)right)4 Gamma (n+1)$.
    – David G. Stork
    Jul 27 at 8:11















Mathematica gives (for $n>-1/2$): $-fracsqrtpi Gamma left(n+frac12right) left(H_n+log (4)right)4 Gamma (n+1)$.
– David G. Stork
Jul 27 at 8:11




Mathematica gives (for $n>-1/2$): $-fracsqrtpi Gamma left(n+frac12right) left(H_n+log (4)right)4 Gamma (n+1)$.
– David G. Stork
Jul 27 at 8:11










3 Answers
3






active

oldest

votes

















up vote
2
down vote



accepted










You can let $cos^2 (x) = t$ to obtain
beginalign
F(n) &= frac14 int limits_0^1 t^n-frac12 (1-t)^-frac12 ln(1-t) , mathrmd t \
&= frac14fracmathrmdmathrmds int limits_0^1 t^n-frac12 (1-t)^s - 1 , mathrmd t ~Bigg lvert_s=frac12 \
&= frac14 fracmathrmdmathrmds operatornameB left(n+frac12,sright)\
&= -fracGammaleft(n+frac12right) Gammaleft(frac12right)4Gamma(n+1) left[psi (n+1) - psi left(frac12right)right] , .
endalign
For $n in mathbbN_0$ the special values $Gammaleft(n+frac12right) = frac(2n)! sqrtpi4^n n!$ , $psi left(frac12right) = - gamma - 2 ln(2)$ and $psi(n+1) = H_n - gamma$ yield
$$F(n) = - fracpi4 frac(2n-1)!!(2n)!![H_n + 2 ln(2)] , . $$






share|cite|improve this answer




























    up vote
    2
    down vote













    Hint: With $beta$-function
    $$beta(x,y) = 2int_0^pi/2sin^2x-1theta cos^2y-1theta dtheta = dfracGamma(x)Gamma(y)Gamma(x+y)$$
    then
    $$dfracddxbeta(x,n+frac12) =dfracddx 2int_0^pi/2sin^2x-1theta cos^2ntheta dtheta=int_0^pi/2sin^2x-1theta cos^2ntheta lnsin x dtheta$$
    and
    $$F(n)=left(dfracddxbeta(x,n+frac12)right)_x=frac12 =left(dfracddxdfracGamma(x)Gamma(n+frac12)Gamma(x+n+frac12)right)_x=frac12
    $$






    share|cite|improve this answer





















    • This is elegant, for sure ! $to +1$
      – Claude Leibovici
      Jul 27 at 8:34

















    up vote
    2
    down vote













    Note that for $xin (0,pi/2]$,
    $$ln(sin(x))=lnleft(frace^ix-e^-ix2iright)
    =-ln(2)-sum_j=1^inftyfraccos(2jx)j.$$
    Hence, for $0leq k<n$ and $jgeq 1$,
    $$int_0^pi/2cos(2left(n-kright)x)cos(2jx) dx=begincases
    pi/4 &textif $n-k=j$\
    0&textotherwise
    endcases.$$
    Therefore, following your approach, we obtain that
    $$beginalign*
    F(n)&=-fracpi2^2n+1left(ln(2)binom2nn+sum_k=0^n-1binom2nkfrac1n-kright)\
    &=-fracpi2^2n+2binom2nnleft(2ln(2)+H_nright)endalign*.$$






    share|cite|improve this answer























      Your Answer




      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: false,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );








       

      draft saved


      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2864160%2fwork-out-int-0-pi-2-cos2nx-ln-sinx-dx%23new-answer', 'question_page');

      );

      Post as a guest






























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      2
      down vote



      accepted










      You can let $cos^2 (x) = t$ to obtain
      beginalign
      F(n) &= frac14 int limits_0^1 t^n-frac12 (1-t)^-frac12 ln(1-t) , mathrmd t \
      &= frac14fracmathrmdmathrmds int limits_0^1 t^n-frac12 (1-t)^s - 1 , mathrmd t ~Bigg lvert_s=frac12 \
      &= frac14 fracmathrmdmathrmds operatornameB left(n+frac12,sright)\
      &= -fracGammaleft(n+frac12right) Gammaleft(frac12right)4Gamma(n+1) left[psi (n+1) - psi left(frac12right)right] , .
      endalign
      For $n in mathbbN_0$ the special values $Gammaleft(n+frac12right) = frac(2n)! sqrtpi4^n n!$ , $psi left(frac12right) = - gamma - 2 ln(2)$ and $psi(n+1) = H_n - gamma$ yield
      $$F(n) = - fracpi4 frac(2n-1)!!(2n)!![H_n + 2 ln(2)] , . $$






      share|cite|improve this answer

























        up vote
        2
        down vote



        accepted










        You can let $cos^2 (x) = t$ to obtain
        beginalign
        F(n) &= frac14 int limits_0^1 t^n-frac12 (1-t)^-frac12 ln(1-t) , mathrmd t \
        &= frac14fracmathrmdmathrmds int limits_0^1 t^n-frac12 (1-t)^s - 1 , mathrmd t ~Bigg lvert_s=frac12 \
        &= frac14 fracmathrmdmathrmds operatornameB left(n+frac12,sright)\
        &= -fracGammaleft(n+frac12right) Gammaleft(frac12right)4Gamma(n+1) left[psi (n+1) - psi left(frac12right)right] , .
        endalign
        For $n in mathbbN_0$ the special values $Gammaleft(n+frac12right) = frac(2n)! sqrtpi4^n n!$ , $psi left(frac12right) = - gamma - 2 ln(2)$ and $psi(n+1) = H_n - gamma$ yield
        $$F(n) = - fracpi4 frac(2n-1)!!(2n)!![H_n + 2 ln(2)] , . $$






        share|cite|improve this answer























          up vote
          2
          down vote



          accepted







          up vote
          2
          down vote



          accepted






          You can let $cos^2 (x) = t$ to obtain
          beginalign
          F(n) &= frac14 int limits_0^1 t^n-frac12 (1-t)^-frac12 ln(1-t) , mathrmd t \
          &= frac14fracmathrmdmathrmds int limits_0^1 t^n-frac12 (1-t)^s - 1 , mathrmd t ~Bigg lvert_s=frac12 \
          &= frac14 fracmathrmdmathrmds operatornameB left(n+frac12,sright)\
          &= -fracGammaleft(n+frac12right) Gammaleft(frac12right)4Gamma(n+1) left[psi (n+1) - psi left(frac12right)right] , .
          endalign
          For $n in mathbbN_0$ the special values $Gammaleft(n+frac12right) = frac(2n)! sqrtpi4^n n!$ , $psi left(frac12right) = - gamma - 2 ln(2)$ and $psi(n+1) = H_n - gamma$ yield
          $$F(n) = - fracpi4 frac(2n-1)!!(2n)!![H_n + 2 ln(2)] , . $$






          share|cite|improve this answer













          You can let $cos^2 (x) = t$ to obtain
          beginalign
          F(n) &= frac14 int limits_0^1 t^n-frac12 (1-t)^-frac12 ln(1-t) , mathrmd t \
          &= frac14fracmathrmdmathrmds int limits_0^1 t^n-frac12 (1-t)^s - 1 , mathrmd t ~Bigg lvert_s=frac12 \
          &= frac14 fracmathrmdmathrmds operatornameB left(n+frac12,sright)\
          &= -fracGammaleft(n+frac12right) Gammaleft(frac12right)4Gamma(n+1) left[psi (n+1) - psi left(frac12right)right] , .
          endalign
          For $n in mathbbN_0$ the special values $Gammaleft(n+frac12right) = frac(2n)! sqrtpi4^n n!$ , $psi left(frac12right) = - gamma - 2 ln(2)$ and $psi(n+1) = H_n - gamma$ yield
          $$F(n) = - fracpi4 frac(2n-1)!!(2n)!![H_n + 2 ln(2)] , . $$







          share|cite|improve this answer













          share|cite|improve this answer



          share|cite|improve this answer











          answered Jul 27 at 8:33









          ComplexYetTrivial

          2,787624




          2,787624




















              up vote
              2
              down vote













              Hint: With $beta$-function
              $$beta(x,y) = 2int_0^pi/2sin^2x-1theta cos^2y-1theta dtheta = dfracGamma(x)Gamma(y)Gamma(x+y)$$
              then
              $$dfracddxbeta(x,n+frac12) =dfracddx 2int_0^pi/2sin^2x-1theta cos^2ntheta dtheta=int_0^pi/2sin^2x-1theta cos^2ntheta lnsin x dtheta$$
              and
              $$F(n)=left(dfracddxbeta(x,n+frac12)right)_x=frac12 =left(dfracddxdfracGamma(x)Gamma(n+frac12)Gamma(x+n+frac12)right)_x=frac12
              $$






              share|cite|improve this answer





















              • This is elegant, for sure ! $to +1$
                – Claude Leibovici
                Jul 27 at 8:34














              up vote
              2
              down vote













              Hint: With $beta$-function
              $$beta(x,y) = 2int_0^pi/2sin^2x-1theta cos^2y-1theta dtheta = dfracGamma(x)Gamma(y)Gamma(x+y)$$
              then
              $$dfracddxbeta(x,n+frac12) =dfracddx 2int_0^pi/2sin^2x-1theta cos^2ntheta dtheta=int_0^pi/2sin^2x-1theta cos^2ntheta lnsin x dtheta$$
              and
              $$F(n)=left(dfracddxbeta(x,n+frac12)right)_x=frac12 =left(dfracddxdfracGamma(x)Gamma(n+frac12)Gamma(x+n+frac12)right)_x=frac12
              $$






              share|cite|improve this answer





















              • This is elegant, for sure ! $to +1$
                – Claude Leibovici
                Jul 27 at 8:34












              up vote
              2
              down vote










              up vote
              2
              down vote









              Hint: With $beta$-function
              $$beta(x,y) = 2int_0^pi/2sin^2x-1theta cos^2y-1theta dtheta = dfracGamma(x)Gamma(y)Gamma(x+y)$$
              then
              $$dfracddxbeta(x,n+frac12) =dfracddx 2int_0^pi/2sin^2x-1theta cos^2ntheta dtheta=int_0^pi/2sin^2x-1theta cos^2ntheta lnsin x dtheta$$
              and
              $$F(n)=left(dfracddxbeta(x,n+frac12)right)_x=frac12 =left(dfracddxdfracGamma(x)Gamma(n+frac12)Gamma(x+n+frac12)right)_x=frac12
              $$






              share|cite|improve this answer













              Hint: With $beta$-function
              $$beta(x,y) = 2int_0^pi/2sin^2x-1theta cos^2y-1theta dtheta = dfracGamma(x)Gamma(y)Gamma(x+y)$$
              then
              $$dfracddxbeta(x,n+frac12) =dfracddx 2int_0^pi/2sin^2x-1theta cos^2ntheta dtheta=int_0^pi/2sin^2x-1theta cos^2ntheta lnsin x dtheta$$
              and
              $$F(n)=left(dfracddxbeta(x,n+frac12)right)_x=frac12 =left(dfracddxdfracGamma(x)Gamma(n+frac12)Gamma(x+n+frac12)right)_x=frac12
              $$







              share|cite|improve this answer













              share|cite|improve this answer



              share|cite|improve this answer











              answered Jul 27 at 8:23









              Nosrati

              19.2k41544




              19.2k41544











              • This is elegant, for sure ! $to +1$
                – Claude Leibovici
                Jul 27 at 8:34
















              • This is elegant, for sure ! $to +1$
                – Claude Leibovici
                Jul 27 at 8:34















              This is elegant, for sure ! $to +1$
              – Claude Leibovici
              Jul 27 at 8:34




              This is elegant, for sure ! $to +1$
              – Claude Leibovici
              Jul 27 at 8:34










              up vote
              2
              down vote













              Note that for $xin (0,pi/2]$,
              $$ln(sin(x))=lnleft(frace^ix-e^-ix2iright)
              =-ln(2)-sum_j=1^inftyfraccos(2jx)j.$$
              Hence, for $0leq k<n$ and $jgeq 1$,
              $$int_0^pi/2cos(2left(n-kright)x)cos(2jx) dx=begincases
              pi/4 &textif $n-k=j$\
              0&textotherwise
              endcases.$$
              Therefore, following your approach, we obtain that
              $$beginalign*
              F(n)&=-fracpi2^2n+1left(ln(2)binom2nn+sum_k=0^n-1binom2nkfrac1n-kright)\
              &=-fracpi2^2n+2binom2nnleft(2ln(2)+H_nright)endalign*.$$






              share|cite|improve this answer



























                up vote
                2
                down vote













                Note that for $xin (0,pi/2]$,
                $$ln(sin(x))=lnleft(frace^ix-e^-ix2iright)
                =-ln(2)-sum_j=1^inftyfraccos(2jx)j.$$
                Hence, for $0leq k<n$ and $jgeq 1$,
                $$int_0^pi/2cos(2left(n-kright)x)cos(2jx) dx=begincases
                pi/4 &textif $n-k=j$\
                0&textotherwise
                endcases.$$
                Therefore, following your approach, we obtain that
                $$beginalign*
                F(n)&=-fracpi2^2n+1left(ln(2)binom2nn+sum_k=0^n-1binom2nkfrac1n-kright)\
                &=-fracpi2^2n+2binom2nnleft(2ln(2)+H_nright)endalign*.$$






                share|cite|improve this answer

























                  up vote
                  2
                  down vote










                  up vote
                  2
                  down vote









                  Note that for $xin (0,pi/2]$,
                  $$ln(sin(x))=lnleft(frace^ix-e^-ix2iright)
                  =-ln(2)-sum_j=1^inftyfraccos(2jx)j.$$
                  Hence, for $0leq k<n$ and $jgeq 1$,
                  $$int_0^pi/2cos(2left(n-kright)x)cos(2jx) dx=begincases
                  pi/4 &textif $n-k=j$\
                  0&textotherwise
                  endcases.$$
                  Therefore, following your approach, we obtain that
                  $$beginalign*
                  F(n)&=-fracpi2^2n+1left(ln(2)binom2nn+sum_k=0^n-1binom2nkfrac1n-kright)\
                  &=-fracpi2^2n+2binom2nnleft(2ln(2)+H_nright)endalign*.$$






                  share|cite|improve this answer















                  Note that for $xin (0,pi/2]$,
                  $$ln(sin(x))=lnleft(frace^ix-e^-ix2iright)
                  =-ln(2)-sum_j=1^inftyfraccos(2jx)j.$$
                  Hence, for $0leq k<n$ and $jgeq 1$,
                  $$int_0^pi/2cos(2left(n-kright)x)cos(2jx) dx=begincases
                  pi/4 &textif $n-k=j$\
                  0&textotherwise
                  endcases.$$
                  Therefore, following your approach, we obtain that
                  $$beginalign*
                  F(n)&=-fracpi2^2n+1left(ln(2)binom2nn+sum_k=0^n-1binom2nkfrac1n-kright)\
                  &=-fracpi2^2n+2binom2nnleft(2ln(2)+H_nright)endalign*.$$







                  share|cite|improve this answer















                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jul 27 at 8:51


























                  answered Jul 27 at 8:23









                  Robert Z

                  83.8k954122




                  83.8k954122






















                       

                      draft saved


                      draft discarded


























                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2864160%2fwork-out-int-0-pi-2-cos2nx-ln-sinx-dx%23new-answer', 'question_page');

                      );

                      Post as a guest













































































                      Comments

                      Popular posts from this blog

                      What is the equation of a 3D cone with generalised tilt?

                      Color the edges and diagonals of a regular polygon

                      Relationship between determinant of matrix and determinant of adjoint?