Work out $int_0^pi/2cos^2n(x)lnsin(x) dx$
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
$$F(n)=large int_0^pi/2cos^2n(x)lnsin(x)mathrm dx$$
$$cos^2n(x)=frac12^2n2n choose n+frac12^2n-1sum_k=0^n-12n choose kcosleft[2left(n-kright)xright]$$
$$I=frac12^2n2n choose nint_0^pi/2lnsin(x)mathrm dx+frac12^2n-1sum_k=0^n-12n choose kint_0^pi/2cosleft[2left(n-kright)xright]lnsin(x)mathrm dx$$
$$I=-fracpi ln(2)2^2n+12n choose n+frac12^2n-1sum_k=0^n-12n choose kint_0^pi/2cosleft[2left(n-kright)xright]lnsin(x)mathrm dx$$
I can't continue.
I would like to evaluate $F(n)$
calculus integration definite-integrals trigonometric-integrals
add a comment |Â
up vote
3
down vote
favorite
$$F(n)=large int_0^pi/2cos^2n(x)lnsin(x)mathrm dx$$
$$cos^2n(x)=frac12^2n2n choose n+frac12^2n-1sum_k=0^n-12n choose kcosleft[2left(n-kright)xright]$$
$$I=frac12^2n2n choose nint_0^pi/2lnsin(x)mathrm dx+frac12^2n-1sum_k=0^n-12n choose kint_0^pi/2cosleft[2left(n-kright)xright]lnsin(x)mathrm dx$$
$$I=-fracpi ln(2)2^2n+12n choose n+frac12^2n-1sum_k=0^n-12n choose kint_0^pi/2cosleft[2left(n-kright)xright]lnsin(x)mathrm dx$$
I can't continue.
I would like to evaluate $F(n)$
calculus integration definite-integrals trigonometric-integrals
Mathematica gives (for $n>-1/2$): $-fracsqrtpi Gamma left(n+frac12right) left(H_n+log (4)right)4 Gamma (n+1)$.
– David G. Stork
Jul 27 at 8:11
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
$$F(n)=large int_0^pi/2cos^2n(x)lnsin(x)mathrm dx$$
$$cos^2n(x)=frac12^2n2n choose n+frac12^2n-1sum_k=0^n-12n choose kcosleft[2left(n-kright)xright]$$
$$I=frac12^2n2n choose nint_0^pi/2lnsin(x)mathrm dx+frac12^2n-1sum_k=0^n-12n choose kint_0^pi/2cosleft[2left(n-kright)xright]lnsin(x)mathrm dx$$
$$I=-fracpi ln(2)2^2n+12n choose n+frac12^2n-1sum_k=0^n-12n choose kint_0^pi/2cosleft[2left(n-kright)xright]lnsin(x)mathrm dx$$
I can't continue.
I would like to evaluate $F(n)$
calculus integration definite-integrals trigonometric-integrals
$$F(n)=large int_0^pi/2cos^2n(x)lnsin(x)mathrm dx$$
$$cos^2n(x)=frac12^2n2n choose n+frac12^2n-1sum_k=0^n-12n choose kcosleft[2left(n-kright)xright]$$
$$I=frac12^2n2n choose nint_0^pi/2lnsin(x)mathrm dx+frac12^2n-1sum_k=0^n-12n choose kint_0^pi/2cosleft[2left(n-kright)xright]lnsin(x)mathrm dx$$
$$I=-fracpi ln(2)2^2n+12n choose n+frac12^2n-1sum_k=0^n-12n choose kint_0^pi/2cosleft[2left(n-kright)xright]lnsin(x)mathrm dx$$
I can't continue.
I would like to evaluate $F(n)$
calculus integration definite-integrals trigonometric-integrals
asked Jul 27 at 7:53


Bonjour
51110
51110
Mathematica gives (for $n>-1/2$): $-fracsqrtpi Gamma left(n+frac12right) left(H_n+log (4)right)4 Gamma (n+1)$.
– David G. Stork
Jul 27 at 8:11
add a comment |Â
Mathematica gives (for $n>-1/2$): $-fracsqrtpi Gamma left(n+frac12right) left(H_n+log (4)right)4 Gamma (n+1)$.
– David G. Stork
Jul 27 at 8:11
Mathematica gives (for $n>-1/2$): $-fracsqrtpi Gamma left(n+frac12right) left(H_n+log (4)right)4 Gamma (n+1)$.
– David G. Stork
Jul 27 at 8:11
Mathematica gives (for $n>-1/2$): $-fracsqrtpi Gamma left(n+frac12right) left(H_n+log (4)right)4 Gamma (n+1)$.
– David G. Stork
Jul 27 at 8:11
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
2
down vote
accepted
You can let $cos^2 (x) = t$ to obtain
beginalign
F(n) &= frac14 int limits_0^1 t^n-frac12 (1-t)^-frac12 ln(1-t) , mathrmd t \
&= frac14fracmathrmdmathrmds int limits_0^1 t^n-frac12 (1-t)^s - 1 , mathrmd t ~Bigg lvert_s=frac12 \
&= frac14 fracmathrmdmathrmds operatornameB left(n+frac12,sright)\
&= -fracGammaleft(n+frac12right) Gammaleft(frac12right)4Gamma(n+1) left[psi (n+1) - psi left(frac12right)right] , .
endalign
For $n in mathbbN_0$ the special values $Gammaleft(n+frac12right) = frac(2n)! sqrtpi4^n n!$ , $psi left(frac12right) = - gamma - 2 ln(2)$ and $psi(n+1) = H_n - gamma$ yield
$$F(n) = - fracpi4 frac(2n-1)!!(2n)!![H_n + 2 ln(2)] , . $$
add a comment |Â
up vote
2
down vote
Hint: With $beta$-function
$$beta(x,y) = 2int_0^pi/2sin^2x-1theta cos^2y-1theta dtheta = dfracGamma(x)Gamma(y)Gamma(x+y)$$
then
$$dfracddxbeta(x,n+frac12) =dfracddx 2int_0^pi/2sin^2x-1theta cos^2ntheta dtheta=int_0^pi/2sin^2x-1theta cos^2ntheta lnsin x dtheta$$
and
$$F(n)=left(dfracddxbeta(x,n+frac12)right)_x=frac12 =left(dfracddxdfracGamma(x)Gamma(n+frac12)Gamma(x+n+frac12)right)_x=frac12
$$
This is elegant, for sure ! $to +1$
– Claude Leibovici
Jul 27 at 8:34
add a comment |Â
up vote
2
down vote
Note that for $xin (0,pi/2]$,
$$ln(sin(x))=lnleft(frace^ix-e^-ix2iright)
=-ln(2)-sum_j=1^inftyfraccos(2jx)j.$$
Hence, for $0leq k<n$ and $jgeq 1$,
$$int_0^pi/2cos(2left(n-kright)x)cos(2jx) dx=begincases
pi/4 &textif $n-k=j$\
0&textotherwise
endcases.$$
Therefore, following your approach, we obtain that
$$beginalign*
F(n)&=-fracpi2^2n+1left(ln(2)binom2nn+sum_k=0^n-1binom2nkfrac1n-kright)\
&=-fracpi2^2n+2binom2nnleft(2ln(2)+H_nright)endalign*.$$
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
You can let $cos^2 (x) = t$ to obtain
beginalign
F(n) &= frac14 int limits_0^1 t^n-frac12 (1-t)^-frac12 ln(1-t) , mathrmd t \
&= frac14fracmathrmdmathrmds int limits_0^1 t^n-frac12 (1-t)^s - 1 , mathrmd t ~Bigg lvert_s=frac12 \
&= frac14 fracmathrmdmathrmds operatornameB left(n+frac12,sright)\
&= -fracGammaleft(n+frac12right) Gammaleft(frac12right)4Gamma(n+1) left[psi (n+1) - psi left(frac12right)right] , .
endalign
For $n in mathbbN_0$ the special values $Gammaleft(n+frac12right) = frac(2n)! sqrtpi4^n n!$ , $psi left(frac12right) = - gamma - 2 ln(2)$ and $psi(n+1) = H_n - gamma$ yield
$$F(n) = - fracpi4 frac(2n-1)!!(2n)!![H_n + 2 ln(2)] , . $$
add a comment |Â
up vote
2
down vote
accepted
You can let $cos^2 (x) = t$ to obtain
beginalign
F(n) &= frac14 int limits_0^1 t^n-frac12 (1-t)^-frac12 ln(1-t) , mathrmd t \
&= frac14fracmathrmdmathrmds int limits_0^1 t^n-frac12 (1-t)^s - 1 , mathrmd t ~Bigg lvert_s=frac12 \
&= frac14 fracmathrmdmathrmds operatornameB left(n+frac12,sright)\
&= -fracGammaleft(n+frac12right) Gammaleft(frac12right)4Gamma(n+1) left[psi (n+1) - psi left(frac12right)right] , .
endalign
For $n in mathbbN_0$ the special values $Gammaleft(n+frac12right) = frac(2n)! sqrtpi4^n n!$ , $psi left(frac12right) = - gamma - 2 ln(2)$ and $psi(n+1) = H_n - gamma$ yield
$$F(n) = - fracpi4 frac(2n-1)!!(2n)!![H_n + 2 ln(2)] , . $$
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
You can let $cos^2 (x) = t$ to obtain
beginalign
F(n) &= frac14 int limits_0^1 t^n-frac12 (1-t)^-frac12 ln(1-t) , mathrmd t \
&= frac14fracmathrmdmathrmds int limits_0^1 t^n-frac12 (1-t)^s - 1 , mathrmd t ~Bigg lvert_s=frac12 \
&= frac14 fracmathrmdmathrmds operatornameB left(n+frac12,sright)\
&= -fracGammaleft(n+frac12right) Gammaleft(frac12right)4Gamma(n+1) left[psi (n+1) - psi left(frac12right)right] , .
endalign
For $n in mathbbN_0$ the special values $Gammaleft(n+frac12right) = frac(2n)! sqrtpi4^n n!$ , $psi left(frac12right) = - gamma - 2 ln(2)$ and $psi(n+1) = H_n - gamma$ yield
$$F(n) = - fracpi4 frac(2n-1)!!(2n)!![H_n + 2 ln(2)] , . $$
You can let $cos^2 (x) = t$ to obtain
beginalign
F(n) &= frac14 int limits_0^1 t^n-frac12 (1-t)^-frac12 ln(1-t) , mathrmd t \
&= frac14fracmathrmdmathrmds int limits_0^1 t^n-frac12 (1-t)^s - 1 , mathrmd t ~Bigg lvert_s=frac12 \
&= frac14 fracmathrmdmathrmds operatornameB left(n+frac12,sright)\
&= -fracGammaleft(n+frac12right) Gammaleft(frac12right)4Gamma(n+1) left[psi (n+1) - psi left(frac12right)right] , .
endalign
For $n in mathbbN_0$ the special values $Gammaleft(n+frac12right) = frac(2n)! sqrtpi4^n n!$ , $psi left(frac12right) = - gamma - 2 ln(2)$ and $psi(n+1) = H_n - gamma$ yield
$$F(n) = - fracpi4 frac(2n-1)!!(2n)!![H_n + 2 ln(2)] , . $$
answered Jul 27 at 8:33
ComplexYetTrivial
2,787624
2,787624
add a comment |Â
add a comment |Â
up vote
2
down vote
Hint: With $beta$-function
$$beta(x,y) = 2int_0^pi/2sin^2x-1theta cos^2y-1theta dtheta = dfracGamma(x)Gamma(y)Gamma(x+y)$$
then
$$dfracddxbeta(x,n+frac12) =dfracddx 2int_0^pi/2sin^2x-1theta cos^2ntheta dtheta=int_0^pi/2sin^2x-1theta cos^2ntheta lnsin x dtheta$$
and
$$F(n)=left(dfracddxbeta(x,n+frac12)right)_x=frac12 =left(dfracddxdfracGamma(x)Gamma(n+frac12)Gamma(x+n+frac12)right)_x=frac12
$$
This is elegant, for sure ! $to +1$
– Claude Leibovici
Jul 27 at 8:34
add a comment |Â
up vote
2
down vote
Hint: With $beta$-function
$$beta(x,y) = 2int_0^pi/2sin^2x-1theta cos^2y-1theta dtheta = dfracGamma(x)Gamma(y)Gamma(x+y)$$
then
$$dfracddxbeta(x,n+frac12) =dfracddx 2int_0^pi/2sin^2x-1theta cos^2ntheta dtheta=int_0^pi/2sin^2x-1theta cos^2ntheta lnsin x dtheta$$
and
$$F(n)=left(dfracddxbeta(x,n+frac12)right)_x=frac12 =left(dfracddxdfracGamma(x)Gamma(n+frac12)Gamma(x+n+frac12)right)_x=frac12
$$
This is elegant, for sure ! $to +1$
– Claude Leibovici
Jul 27 at 8:34
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Hint: With $beta$-function
$$beta(x,y) = 2int_0^pi/2sin^2x-1theta cos^2y-1theta dtheta = dfracGamma(x)Gamma(y)Gamma(x+y)$$
then
$$dfracddxbeta(x,n+frac12) =dfracddx 2int_0^pi/2sin^2x-1theta cos^2ntheta dtheta=int_0^pi/2sin^2x-1theta cos^2ntheta lnsin x dtheta$$
and
$$F(n)=left(dfracddxbeta(x,n+frac12)right)_x=frac12 =left(dfracddxdfracGamma(x)Gamma(n+frac12)Gamma(x+n+frac12)right)_x=frac12
$$
Hint: With $beta$-function
$$beta(x,y) = 2int_0^pi/2sin^2x-1theta cos^2y-1theta dtheta = dfracGamma(x)Gamma(y)Gamma(x+y)$$
then
$$dfracddxbeta(x,n+frac12) =dfracddx 2int_0^pi/2sin^2x-1theta cos^2ntheta dtheta=int_0^pi/2sin^2x-1theta cos^2ntheta lnsin x dtheta$$
and
$$F(n)=left(dfracddxbeta(x,n+frac12)right)_x=frac12 =left(dfracddxdfracGamma(x)Gamma(n+frac12)Gamma(x+n+frac12)right)_x=frac12
$$
answered Jul 27 at 8:23


Nosrati
19.2k41544
19.2k41544
This is elegant, for sure ! $to +1$
– Claude Leibovici
Jul 27 at 8:34
add a comment |Â
This is elegant, for sure ! $to +1$
– Claude Leibovici
Jul 27 at 8:34
This is elegant, for sure ! $to +1$
– Claude Leibovici
Jul 27 at 8:34
This is elegant, for sure ! $to +1$
– Claude Leibovici
Jul 27 at 8:34
add a comment |Â
up vote
2
down vote
Note that for $xin (0,pi/2]$,
$$ln(sin(x))=lnleft(frace^ix-e^-ix2iright)
=-ln(2)-sum_j=1^inftyfraccos(2jx)j.$$
Hence, for $0leq k<n$ and $jgeq 1$,
$$int_0^pi/2cos(2left(n-kright)x)cos(2jx) dx=begincases
pi/4 &textif $n-k=j$\
0&textotherwise
endcases.$$
Therefore, following your approach, we obtain that
$$beginalign*
F(n)&=-fracpi2^2n+1left(ln(2)binom2nn+sum_k=0^n-1binom2nkfrac1n-kright)\
&=-fracpi2^2n+2binom2nnleft(2ln(2)+H_nright)endalign*.$$
add a comment |Â
up vote
2
down vote
Note that for $xin (0,pi/2]$,
$$ln(sin(x))=lnleft(frace^ix-e^-ix2iright)
=-ln(2)-sum_j=1^inftyfraccos(2jx)j.$$
Hence, for $0leq k<n$ and $jgeq 1$,
$$int_0^pi/2cos(2left(n-kright)x)cos(2jx) dx=begincases
pi/4 &textif $n-k=j$\
0&textotherwise
endcases.$$
Therefore, following your approach, we obtain that
$$beginalign*
F(n)&=-fracpi2^2n+1left(ln(2)binom2nn+sum_k=0^n-1binom2nkfrac1n-kright)\
&=-fracpi2^2n+2binom2nnleft(2ln(2)+H_nright)endalign*.$$
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Note that for $xin (0,pi/2]$,
$$ln(sin(x))=lnleft(frace^ix-e^-ix2iright)
=-ln(2)-sum_j=1^inftyfraccos(2jx)j.$$
Hence, for $0leq k<n$ and $jgeq 1$,
$$int_0^pi/2cos(2left(n-kright)x)cos(2jx) dx=begincases
pi/4 &textif $n-k=j$\
0&textotherwise
endcases.$$
Therefore, following your approach, we obtain that
$$beginalign*
F(n)&=-fracpi2^2n+1left(ln(2)binom2nn+sum_k=0^n-1binom2nkfrac1n-kright)\
&=-fracpi2^2n+2binom2nnleft(2ln(2)+H_nright)endalign*.$$
Note that for $xin (0,pi/2]$,
$$ln(sin(x))=lnleft(frace^ix-e^-ix2iright)
=-ln(2)-sum_j=1^inftyfraccos(2jx)j.$$
Hence, for $0leq k<n$ and $jgeq 1$,
$$int_0^pi/2cos(2left(n-kright)x)cos(2jx) dx=begincases
pi/4 &textif $n-k=j$\
0&textotherwise
endcases.$$
Therefore, following your approach, we obtain that
$$beginalign*
F(n)&=-fracpi2^2n+1left(ln(2)binom2nn+sum_k=0^n-1binom2nkfrac1n-kright)\
&=-fracpi2^2n+2binom2nnleft(2ln(2)+H_nright)endalign*.$$
edited Jul 27 at 8:51
answered Jul 27 at 8:23


Robert Z
83.8k954122
83.8k954122
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2864160%2fwork-out-int-0-pi-2-cos2nx-ln-sinx-dx%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Mathematica gives (for $n>-1/2$): $-fracsqrtpi Gamma left(n+frac12right) left(H_n+log (4)right)4 Gamma (n+1)$.
– David G. Stork
Jul 27 at 8:11