Bijection between nested-tuples and map-tuples
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Tuples are usually defined as indexed sets:
$$
langle x_1ldots x_nrangle_mathsfM := (x_i)_iin1ldots n
$$
However, this definition does not work with n-ary Cartesian products.
Perhaps, an element of $left(prod_i=1^n X_iright)$, assuming left associativity, is better thought as:
beginalign*
langle x_1ldots x_nrangle_mathsfN :=
begincases
x_1 &text if n=1\
langlelangle x_1ldots x_n-1rangle_mathsfN, x_nrangle_mathsfK &text else
endcases
endalign*
where $langlerangle_mathsfK$ denotes the Kuratowski pair and
$langle x_nldots x_nrangle_mathsfN$ and $langle x_nldots x_n+1rangle_mathsfN$ are usually abbreviated with $langle x_nrangle_mathsfN$ and $langle x_n, x_n+1rangle_mathsfN$.
I am not sure whether I read there is canonical bijection between the two definitions. One could write it as:
$$
langle x_1ldots x_nrangle_mathsfM
mapsto
langle x_1ldots x_nrangle_mathsfN
$$
but upon thinking, given the triple $langle a,b,crangle_*$,
$$
langle a,b,crangle_mathsfM =
langle 1, arangle_mathsfK,
langle 2, arangle_mathsfK,
langle 3, arangle_mathsfK
$$
while:
beginalign*
langle a,b,crangle_mathsfN &=
biglanglelangle a,brangle,cbigrangle_mathsfK\
&=leftlanglebiga,a,bbig,crightrangle_mathsfK\
&=leftleftbiga,a,bbigright,;
leftbiga,a,bbig,crightright
endalign*
So the map-tuple has three elements $langle i, *rangle_mathsfK$ (with $langlerangle_mathsfK$'s further expansible), while the nested version has two elements:
$leftbiga,a,bbigright$
and
$leftbiga,a,bbig,cright$ and the different cardinality prevents a bijection.
Summing up, usually textbooks define tuples like $langle rangle_mathsfM$ above. That does not match with tuples generated by ordinary operations such as $Atimes Btimes C$ or the common $mathbbR^n$.
How do we reconcile the two notions?
elementary-set-theory
add a comment |Â
up vote
0
down vote
favorite
Tuples are usually defined as indexed sets:
$$
langle x_1ldots x_nrangle_mathsfM := (x_i)_iin1ldots n
$$
However, this definition does not work with n-ary Cartesian products.
Perhaps, an element of $left(prod_i=1^n X_iright)$, assuming left associativity, is better thought as:
beginalign*
langle x_1ldots x_nrangle_mathsfN :=
begincases
x_1 &text if n=1\
langlelangle x_1ldots x_n-1rangle_mathsfN, x_nrangle_mathsfK &text else
endcases
endalign*
where $langlerangle_mathsfK$ denotes the Kuratowski pair and
$langle x_nldots x_nrangle_mathsfN$ and $langle x_nldots x_n+1rangle_mathsfN$ are usually abbreviated with $langle x_nrangle_mathsfN$ and $langle x_n, x_n+1rangle_mathsfN$.
I am not sure whether I read there is canonical bijection between the two definitions. One could write it as:
$$
langle x_1ldots x_nrangle_mathsfM
mapsto
langle x_1ldots x_nrangle_mathsfN
$$
but upon thinking, given the triple $langle a,b,crangle_*$,
$$
langle a,b,crangle_mathsfM =
langle 1, arangle_mathsfK,
langle 2, arangle_mathsfK,
langle 3, arangle_mathsfK
$$
while:
beginalign*
langle a,b,crangle_mathsfN &=
biglanglelangle a,brangle,cbigrangle_mathsfK\
&=leftlanglebiga,a,bbig,crightrangle_mathsfK\
&=leftleftbiga,a,bbigright,;
leftbiga,a,bbig,crightright
endalign*
So the map-tuple has three elements $langle i, *rangle_mathsfK$ (with $langlerangle_mathsfK$'s further expansible), while the nested version has two elements:
$leftbiga,a,bbigright$
and
$leftbiga,a,bbig,cright$ and the different cardinality prevents a bijection.
Summing up, usually textbooks define tuples like $langle rangle_mathsfM$ above. That does not match with tuples generated by ordinary operations such as $Atimes Btimes C$ or the common $mathbbR^n$.
How do we reconcile the two notions?
elementary-set-theory
Show by induction there is a bijection between finite map tuples and set tuples.
â William Elliot
Jul 22 at 22:46
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Tuples are usually defined as indexed sets:
$$
langle x_1ldots x_nrangle_mathsfM := (x_i)_iin1ldots n
$$
However, this definition does not work with n-ary Cartesian products.
Perhaps, an element of $left(prod_i=1^n X_iright)$, assuming left associativity, is better thought as:
beginalign*
langle x_1ldots x_nrangle_mathsfN :=
begincases
x_1 &text if n=1\
langlelangle x_1ldots x_n-1rangle_mathsfN, x_nrangle_mathsfK &text else
endcases
endalign*
where $langlerangle_mathsfK$ denotes the Kuratowski pair and
$langle x_nldots x_nrangle_mathsfN$ and $langle x_nldots x_n+1rangle_mathsfN$ are usually abbreviated with $langle x_nrangle_mathsfN$ and $langle x_n, x_n+1rangle_mathsfN$.
I am not sure whether I read there is canonical bijection between the two definitions. One could write it as:
$$
langle x_1ldots x_nrangle_mathsfM
mapsto
langle x_1ldots x_nrangle_mathsfN
$$
but upon thinking, given the triple $langle a,b,crangle_*$,
$$
langle a,b,crangle_mathsfM =
langle 1, arangle_mathsfK,
langle 2, arangle_mathsfK,
langle 3, arangle_mathsfK
$$
while:
beginalign*
langle a,b,crangle_mathsfN &=
biglanglelangle a,brangle,cbigrangle_mathsfK\
&=leftlanglebiga,a,bbig,crightrangle_mathsfK\
&=leftleftbiga,a,bbigright,;
leftbiga,a,bbig,crightright
endalign*
So the map-tuple has three elements $langle i, *rangle_mathsfK$ (with $langlerangle_mathsfK$'s further expansible), while the nested version has two elements:
$leftbiga,a,bbigright$
and
$leftbiga,a,bbig,cright$ and the different cardinality prevents a bijection.
Summing up, usually textbooks define tuples like $langle rangle_mathsfM$ above. That does not match with tuples generated by ordinary operations such as $Atimes Btimes C$ or the common $mathbbR^n$.
How do we reconcile the two notions?
elementary-set-theory
Tuples are usually defined as indexed sets:
$$
langle x_1ldots x_nrangle_mathsfM := (x_i)_iin1ldots n
$$
However, this definition does not work with n-ary Cartesian products.
Perhaps, an element of $left(prod_i=1^n X_iright)$, assuming left associativity, is better thought as:
beginalign*
langle x_1ldots x_nrangle_mathsfN :=
begincases
x_1 &text if n=1\
langlelangle x_1ldots x_n-1rangle_mathsfN, x_nrangle_mathsfK &text else
endcases
endalign*
where $langlerangle_mathsfK$ denotes the Kuratowski pair and
$langle x_nldots x_nrangle_mathsfN$ and $langle x_nldots x_n+1rangle_mathsfN$ are usually abbreviated with $langle x_nrangle_mathsfN$ and $langle x_n, x_n+1rangle_mathsfN$.
I am not sure whether I read there is canonical bijection between the two definitions. One could write it as:
$$
langle x_1ldots x_nrangle_mathsfM
mapsto
langle x_1ldots x_nrangle_mathsfN
$$
but upon thinking, given the triple $langle a,b,crangle_*$,
$$
langle a,b,crangle_mathsfM =
langle 1, arangle_mathsfK,
langle 2, arangle_mathsfK,
langle 3, arangle_mathsfK
$$
while:
beginalign*
langle a,b,crangle_mathsfN &=
biglanglelangle a,brangle,cbigrangle_mathsfK\
&=leftlanglebiga,a,bbig,crightrangle_mathsfK\
&=leftleftbiga,a,bbigright,;
leftbiga,a,bbig,crightright
endalign*
So the map-tuple has three elements $langle i, *rangle_mathsfK$ (with $langlerangle_mathsfK$'s further expansible), while the nested version has two elements:
$leftbiga,a,bbigright$
and
$leftbiga,a,bbig,cright$ and the different cardinality prevents a bijection.
Summing up, usually textbooks define tuples like $langle rangle_mathsfM$ above. That does not match with tuples generated by ordinary operations such as $Atimes Btimes C$ or the common $mathbbR^n$.
How do we reconcile the two notions?
elementary-set-theory
asked Jul 22 at 16:32
antonio
207210
207210
Show by induction there is a bijection between finite map tuples and set tuples.
â William Elliot
Jul 22 at 22:46
add a comment |Â
Show by induction there is a bijection between finite map tuples and set tuples.
â William Elliot
Jul 22 at 22:46
Show by induction there is a bijection between finite map tuples and set tuples.
â William Elliot
Jul 22 at 22:46
Show by induction there is a bijection between finite map tuples and set tuples.
â William Elliot
Jul 22 at 22:46
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859550%2fbijection-between-nested-tuples-and-map-tuples%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Show by induction there is a bijection between finite map tuples and set tuples.
â William Elliot
Jul 22 at 22:46