Bijection between nested-tuples and map-tuples

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Tuples are usually defined as indexed sets:
$$
langle x_1ldots x_nrangle_mathsfM := (x_i)_iin1ldots n
$$



However, this definition does not work with n-ary Cartesian products.
Perhaps, an element of $left(prod_i=1^n X_iright)$, assuming left associativity, is better thought as:
beginalign*
langle x_1ldots x_nrangle_mathsfN :=
begincases
x_1 &text if n=1\
langlelangle x_1ldots x_n-1rangle_mathsfN, x_nrangle_mathsfK &text else
endcases
endalign*
where $langlerangle_mathsfK$ denotes the Kuratowski pair and
$langle x_nldots x_nrangle_mathsfN$ and $langle x_nldots x_n+1rangle_mathsfN$ are usually abbreviated with $langle x_nrangle_mathsfN$ and $langle x_n, x_n+1rangle_mathsfN$.



I am not sure whether I read there is canonical bijection between the two definitions. One could write it as:
$$
langle x_1ldots x_nrangle_mathsfM
mapsto
langle x_1ldots x_nrangle_mathsfN
$$
but upon thinking, given the triple $langle a,b,crangle_*$,
$$
langle a,b,crangle_mathsfM =
langle 1, arangle_mathsfK,
langle 2, arangle_mathsfK,
langle 3, arangle_mathsfK

$$
while:
beginalign*
langle a,b,crangle_mathsfN &=
biglanglelangle a,brangle,cbigrangle_mathsfK\
&=leftlanglebiga,a,bbig,crightrangle_mathsfK\
&=leftleftbiga,a,bbigright,;
leftbiga,a,bbig,crightright
endalign*
So the map-tuple has three elements $langle i, *rangle_mathsfK$ (with $langlerangle_mathsfK$'s further expansible), while the nested version has two elements:
$leftbiga,a,bbigright$
and
$leftbiga,a,bbig,cright$ and the different cardinality prevents a bijection.



Summing up, usually textbooks define tuples like $langle rangle_mathsfM$ above. That does not match with tuples generated by ordinary operations such as $Atimes Btimes C$ or the common $mathbbR^n$.
How do we reconcile the two notions?







share|cite|improve this question



















  • Show by induction there is a bijection between finite map tuples and set tuples.
    – William Elliot
    Jul 22 at 22:46














up vote
0
down vote

favorite












Tuples are usually defined as indexed sets:
$$
langle x_1ldots x_nrangle_mathsfM := (x_i)_iin1ldots n
$$



However, this definition does not work with n-ary Cartesian products.
Perhaps, an element of $left(prod_i=1^n X_iright)$, assuming left associativity, is better thought as:
beginalign*
langle x_1ldots x_nrangle_mathsfN :=
begincases
x_1 &text if n=1\
langlelangle x_1ldots x_n-1rangle_mathsfN, x_nrangle_mathsfK &text else
endcases
endalign*
where $langlerangle_mathsfK$ denotes the Kuratowski pair and
$langle x_nldots x_nrangle_mathsfN$ and $langle x_nldots x_n+1rangle_mathsfN$ are usually abbreviated with $langle x_nrangle_mathsfN$ and $langle x_n, x_n+1rangle_mathsfN$.



I am not sure whether I read there is canonical bijection between the two definitions. One could write it as:
$$
langle x_1ldots x_nrangle_mathsfM
mapsto
langle x_1ldots x_nrangle_mathsfN
$$
but upon thinking, given the triple $langle a,b,crangle_*$,
$$
langle a,b,crangle_mathsfM =
langle 1, arangle_mathsfK,
langle 2, arangle_mathsfK,
langle 3, arangle_mathsfK

$$
while:
beginalign*
langle a,b,crangle_mathsfN &=
biglanglelangle a,brangle,cbigrangle_mathsfK\
&=leftlanglebiga,a,bbig,crightrangle_mathsfK\
&=leftleftbiga,a,bbigright,;
leftbiga,a,bbig,crightright
endalign*
So the map-tuple has three elements $langle i, *rangle_mathsfK$ (with $langlerangle_mathsfK$'s further expansible), while the nested version has two elements:
$leftbiga,a,bbigright$
and
$leftbiga,a,bbig,cright$ and the different cardinality prevents a bijection.



Summing up, usually textbooks define tuples like $langle rangle_mathsfM$ above. That does not match with tuples generated by ordinary operations such as $Atimes Btimes C$ or the common $mathbbR^n$.
How do we reconcile the two notions?







share|cite|improve this question



















  • Show by induction there is a bijection between finite map tuples and set tuples.
    – William Elliot
    Jul 22 at 22:46












up vote
0
down vote

favorite









up vote
0
down vote

favorite











Tuples are usually defined as indexed sets:
$$
langle x_1ldots x_nrangle_mathsfM := (x_i)_iin1ldots n
$$



However, this definition does not work with n-ary Cartesian products.
Perhaps, an element of $left(prod_i=1^n X_iright)$, assuming left associativity, is better thought as:
beginalign*
langle x_1ldots x_nrangle_mathsfN :=
begincases
x_1 &text if n=1\
langlelangle x_1ldots x_n-1rangle_mathsfN, x_nrangle_mathsfK &text else
endcases
endalign*
where $langlerangle_mathsfK$ denotes the Kuratowski pair and
$langle x_nldots x_nrangle_mathsfN$ and $langle x_nldots x_n+1rangle_mathsfN$ are usually abbreviated with $langle x_nrangle_mathsfN$ and $langle x_n, x_n+1rangle_mathsfN$.



I am not sure whether I read there is canonical bijection between the two definitions. One could write it as:
$$
langle x_1ldots x_nrangle_mathsfM
mapsto
langle x_1ldots x_nrangle_mathsfN
$$
but upon thinking, given the triple $langle a,b,crangle_*$,
$$
langle a,b,crangle_mathsfM =
langle 1, arangle_mathsfK,
langle 2, arangle_mathsfK,
langle 3, arangle_mathsfK

$$
while:
beginalign*
langle a,b,crangle_mathsfN &=
biglanglelangle a,brangle,cbigrangle_mathsfK\
&=leftlanglebiga,a,bbig,crightrangle_mathsfK\
&=leftleftbiga,a,bbigright,;
leftbiga,a,bbig,crightright
endalign*
So the map-tuple has three elements $langle i, *rangle_mathsfK$ (with $langlerangle_mathsfK$'s further expansible), while the nested version has two elements:
$leftbiga,a,bbigright$
and
$leftbiga,a,bbig,cright$ and the different cardinality prevents a bijection.



Summing up, usually textbooks define tuples like $langle rangle_mathsfM$ above. That does not match with tuples generated by ordinary operations such as $Atimes Btimes C$ or the common $mathbbR^n$.
How do we reconcile the two notions?







share|cite|improve this question











Tuples are usually defined as indexed sets:
$$
langle x_1ldots x_nrangle_mathsfM := (x_i)_iin1ldots n
$$



However, this definition does not work with n-ary Cartesian products.
Perhaps, an element of $left(prod_i=1^n X_iright)$, assuming left associativity, is better thought as:
beginalign*
langle x_1ldots x_nrangle_mathsfN :=
begincases
x_1 &text if n=1\
langlelangle x_1ldots x_n-1rangle_mathsfN, x_nrangle_mathsfK &text else
endcases
endalign*
where $langlerangle_mathsfK$ denotes the Kuratowski pair and
$langle x_nldots x_nrangle_mathsfN$ and $langle x_nldots x_n+1rangle_mathsfN$ are usually abbreviated with $langle x_nrangle_mathsfN$ and $langle x_n, x_n+1rangle_mathsfN$.



I am not sure whether I read there is canonical bijection between the two definitions. One could write it as:
$$
langle x_1ldots x_nrangle_mathsfM
mapsto
langle x_1ldots x_nrangle_mathsfN
$$
but upon thinking, given the triple $langle a,b,crangle_*$,
$$
langle a,b,crangle_mathsfM =
langle 1, arangle_mathsfK,
langle 2, arangle_mathsfK,
langle 3, arangle_mathsfK

$$
while:
beginalign*
langle a,b,crangle_mathsfN &=
biglanglelangle a,brangle,cbigrangle_mathsfK\
&=leftlanglebiga,a,bbig,crightrangle_mathsfK\
&=leftleftbiga,a,bbigright,;
leftbiga,a,bbig,crightright
endalign*
So the map-tuple has three elements $langle i, *rangle_mathsfK$ (with $langlerangle_mathsfK$'s further expansible), while the nested version has two elements:
$leftbiga,a,bbigright$
and
$leftbiga,a,bbig,cright$ and the different cardinality prevents a bijection.



Summing up, usually textbooks define tuples like $langle rangle_mathsfM$ above. That does not match with tuples generated by ordinary operations such as $Atimes Btimes C$ or the common $mathbbR^n$.
How do we reconcile the two notions?









share|cite|improve this question










share|cite|improve this question




share|cite|improve this question









asked Jul 22 at 16:32









antonio

207210




207210











  • Show by induction there is a bijection between finite map tuples and set tuples.
    – William Elliot
    Jul 22 at 22:46
















  • Show by induction there is a bijection between finite map tuples and set tuples.
    – William Elliot
    Jul 22 at 22:46















Show by induction there is a bijection between finite map tuples and set tuples.
– William Elliot
Jul 22 at 22:46




Show by induction there is a bijection between finite map tuples and set tuples.
– William Elliot
Jul 22 at 22:46















active

oldest

votes











Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);








 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859550%2fbijection-between-nested-tuples-and-map-tuples%23new-answer', 'question_page');

);

Post as a guest



































active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes










 

draft saved


draft discarded


























 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859550%2fbijection-between-nested-tuples-and-map-tuples%23new-answer', 'question_page');

);

Post as a guest













































































Comments

Popular posts from this blog

What is the equation of a 3D cone with generalised tilt?

Relationship between determinant of matrix and determinant of adjoint?

Color the edges and diagonals of a regular polygon