Integration involving a Dirac delta function

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












How can the following integral can be solved
$$I(t_1,t_2)=int_0^t_1dt'e^-a(t_1-t')int_0^t_2dt''e^-a(t_2-t'')delta(t''-t')$$
where there are no assumptions regarding $t_1$ or $t_2$ (both cases of $t_1>t_2$ or $t_2>t_1$ are valid).



are there any limitations for using the Dirac delta here?







share|cite|improve this question























    up vote
    0
    down vote

    favorite












    How can the following integral can be solved
    $$I(t_1,t_2)=int_0^t_1dt'e^-a(t_1-t')int_0^t_2dt''e^-a(t_2-t'')delta(t''-t')$$
    where there are no assumptions regarding $t_1$ or $t_2$ (both cases of $t_1>t_2$ or $t_2>t_1$ are valid).



    are there any limitations for using the Dirac delta here?







    share|cite|improve this question





















      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      How can the following integral can be solved
      $$I(t_1,t_2)=int_0^t_1dt'e^-a(t_1-t')int_0^t_2dt''e^-a(t_2-t'')delta(t''-t')$$
      where there are no assumptions regarding $t_1$ or $t_2$ (both cases of $t_1>t_2$ or $t_2>t_1$ are valid).



      are there any limitations for using the Dirac delta here?







      share|cite|improve this question











      How can the following integral can be solved
      $$I(t_1,t_2)=int_0^t_1dt'e^-a(t_1-t')int_0^t_2dt''e^-a(t_2-t'')delta(t''-t')$$
      where there are no assumptions regarding $t_1$ or $t_2$ (both cases of $t_1>t_2$ or $t_2>t_1$ are valid).



      are there any limitations for using the Dirac delta here?









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked Jul 22 at 11:51









      jarhead

      1148




      1148




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          2
          down vote



          accepted










          First I do the inner integral:
          $$
          int_0^t_2 dt'' , e^-a(t_2-t'') , delta(t''-t')
          = int_-infty^infty dt'' , chi_[0, t_2](t'') , e^-a(t_2-t'') , delta(t''-t')
          = chi_[0, t_2](t') , e^-a(t_2-t')
          $$
          Here, for any set $A$, $chi_A(t) = 1$ if $tin A$, $chi_A(t)=0$ otherwise.



          Then the outer integral:
          $$
          I(t_1,t_2)
          = int_0^t_1 dt' , e^-a(t_1-t') , chi_[0, t_2](t') , e^-a(t_2-t') \
          = e^-a(t_1+t_2) int_0^t_1 dt' , e^2at' , chi_[0, t_2](t') \
          = e^-a(t_1+t_2) int_-infty^infty dt' , chi_[0, t_1](t') , e^2at' , chi_[0, t_2](t') \
          = e^-a(t_1+t_2) int_-infty^infty dt' , chi_[0, min(t_1,t_2)](t') , e^2at' \
          = e^-a(t_1+t_2) int_0^min(t_1,t_2) dt' , e^2at' \
          = e^-a(t_1+t_2) left[frac12a e^2at' right]_0^min(t_1,t_2) \
          = frac12a e^-a(t_1+t_2) left[e^2amin(t_1,t_2) -1 right]
          $$






          share|cite|improve this answer



















          • 1




            $A$ is just some set. I expanded on it somewhat in my post.
            – md2perpe
            Jul 22 at 12:23






          • 1




            It's similar: $chi_(0, infty)(t) = H(t).$ But $chi_(a,b)(t) = H(t-a) - H(t-b).$
            – md2perpe
            Jul 22 at 12:27






          • 1




            Look at the integral before. There we have both $chi_[0, t_1](t')$ and $chi_[0, t_2](t')$. For the product of these not vanish, we must have both $t' in [0, t_1]$ and $t' in [0, t_2],$ i.e. $t' in [0, t_1] cap [0, t_2] = [0, min(t_1,t_2)].$
            – md2perpe
            Jul 22 at 14:06






          • 1




            In $I(t_1, t_2)$, $e^-2 a t'$ in the second line should be $e^2 a t'$. Ultimately $I(t_1, t_2)$ should come out as $$cases frac 1 2a e^-a (t_1 + t_2) (e^2 a min(t_1, t_2) - 1) & $t_1 > 0 land t_2 > 0$ \ -frac 1 2a e^-a (t_1 + t_2) ( e^2 a max(t_1, t_2) - 1)& $t_1 < 0 land t_2 < 0$ \ 0 & otherwise.$$
            – Maxim
            Jul 22 at 15:20







          • 1




            Let's make up a signed indicator function, $chi_(0,a)(t) = [0 < t < a] - [a < t < 0]$. Then your derivation goes through unchanged till the point where you take the minimum. For $t_1 t_2 < 0$, $chi_(0, t_1)(t) chi_(0, t_2)(t) = 0$. For negative $t_1$ and $t_2$, the value which is closer to zero will be $max(t_1, t_2)$ instead of $min(t_1, t_2)$.
            – Maxim
            Jul 22 at 16:09











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859326%2fintegration-involving-a-dirac-delta-function%23new-answer', 'question_page');

          );

          Post as a guest






























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          2
          down vote



          accepted










          First I do the inner integral:
          $$
          int_0^t_2 dt'' , e^-a(t_2-t'') , delta(t''-t')
          = int_-infty^infty dt'' , chi_[0, t_2](t'') , e^-a(t_2-t'') , delta(t''-t')
          = chi_[0, t_2](t') , e^-a(t_2-t')
          $$
          Here, for any set $A$, $chi_A(t) = 1$ if $tin A$, $chi_A(t)=0$ otherwise.



          Then the outer integral:
          $$
          I(t_1,t_2)
          = int_0^t_1 dt' , e^-a(t_1-t') , chi_[0, t_2](t') , e^-a(t_2-t') \
          = e^-a(t_1+t_2) int_0^t_1 dt' , e^2at' , chi_[0, t_2](t') \
          = e^-a(t_1+t_2) int_-infty^infty dt' , chi_[0, t_1](t') , e^2at' , chi_[0, t_2](t') \
          = e^-a(t_1+t_2) int_-infty^infty dt' , chi_[0, min(t_1,t_2)](t') , e^2at' \
          = e^-a(t_1+t_2) int_0^min(t_1,t_2) dt' , e^2at' \
          = e^-a(t_1+t_2) left[frac12a e^2at' right]_0^min(t_1,t_2) \
          = frac12a e^-a(t_1+t_2) left[e^2amin(t_1,t_2) -1 right]
          $$






          share|cite|improve this answer



















          • 1




            $A$ is just some set. I expanded on it somewhat in my post.
            – md2perpe
            Jul 22 at 12:23






          • 1




            It's similar: $chi_(0, infty)(t) = H(t).$ But $chi_(a,b)(t) = H(t-a) - H(t-b).$
            – md2perpe
            Jul 22 at 12:27






          • 1




            Look at the integral before. There we have both $chi_[0, t_1](t')$ and $chi_[0, t_2](t')$. For the product of these not vanish, we must have both $t' in [0, t_1]$ and $t' in [0, t_2],$ i.e. $t' in [0, t_1] cap [0, t_2] = [0, min(t_1,t_2)].$
            – md2perpe
            Jul 22 at 14:06






          • 1




            In $I(t_1, t_2)$, $e^-2 a t'$ in the second line should be $e^2 a t'$. Ultimately $I(t_1, t_2)$ should come out as $$cases frac 1 2a e^-a (t_1 + t_2) (e^2 a min(t_1, t_2) - 1) & $t_1 > 0 land t_2 > 0$ \ -frac 1 2a e^-a (t_1 + t_2) ( e^2 a max(t_1, t_2) - 1)& $t_1 < 0 land t_2 < 0$ \ 0 & otherwise.$$
            – Maxim
            Jul 22 at 15:20







          • 1




            Let's make up a signed indicator function, $chi_(0,a)(t) = [0 < t < a] - [a < t < 0]$. Then your derivation goes through unchanged till the point where you take the minimum. For $t_1 t_2 < 0$, $chi_(0, t_1)(t) chi_(0, t_2)(t) = 0$. For negative $t_1$ and $t_2$, the value which is closer to zero will be $max(t_1, t_2)$ instead of $min(t_1, t_2)$.
            – Maxim
            Jul 22 at 16:09















          up vote
          2
          down vote



          accepted










          First I do the inner integral:
          $$
          int_0^t_2 dt'' , e^-a(t_2-t'') , delta(t''-t')
          = int_-infty^infty dt'' , chi_[0, t_2](t'') , e^-a(t_2-t'') , delta(t''-t')
          = chi_[0, t_2](t') , e^-a(t_2-t')
          $$
          Here, for any set $A$, $chi_A(t) = 1$ if $tin A$, $chi_A(t)=0$ otherwise.



          Then the outer integral:
          $$
          I(t_1,t_2)
          = int_0^t_1 dt' , e^-a(t_1-t') , chi_[0, t_2](t') , e^-a(t_2-t') \
          = e^-a(t_1+t_2) int_0^t_1 dt' , e^2at' , chi_[0, t_2](t') \
          = e^-a(t_1+t_2) int_-infty^infty dt' , chi_[0, t_1](t') , e^2at' , chi_[0, t_2](t') \
          = e^-a(t_1+t_2) int_-infty^infty dt' , chi_[0, min(t_1,t_2)](t') , e^2at' \
          = e^-a(t_1+t_2) int_0^min(t_1,t_2) dt' , e^2at' \
          = e^-a(t_1+t_2) left[frac12a e^2at' right]_0^min(t_1,t_2) \
          = frac12a e^-a(t_1+t_2) left[e^2amin(t_1,t_2) -1 right]
          $$






          share|cite|improve this answer



















          • 1




            $A$ is just some set. I expanded on it somewhat in my post.
            – md2perpe
            Jul 22 at 12:23






          • 1




            It's similar: $chi_(0, infty)(t) = H(t).$ But $chi_(a,b)(t) = H(t-a) - H(t-b).$
            – md2perpe
            Jul 22 at 12:27






          • 1




            Look at the integral before. There we have both $chi_[0, t_1](t')$ and $chi_[0, t_2](t')$. For the product of these not vanish, we must have both $t' in [0, t_1]$ and $t' in [0, t_2],$ i.e. $t' in [0, t_1] cap [0, t_2] = [0, min(t_1,t_2)].$
            – md2perpe
            Jul 22 at 14:06






          • 1




            In $I(t_1, t_2)$, $e^-2 a t'$ in the second line should be $e^2 a t'$. Ultimately $I(t_1, t_2)$ should come out as $$cases frac 1 2a e^-a (t_1 + t_2) (e^2 a min(t_1, t_2) - 1) & $t_1 > 0 land t_2 > 0$ \ -frac 1 2a e^-a (t_1 + t_2) ( e^2 a max(t_1, t_2) - 1)& $t_1 < 0 land t_2 < 0$ \ 0 & otherwise.$$
            – Maxim
            Jul 22 at 15:20







          • 1




            Let's make up a signed indicator function, $chi_(0,a)(t) = [0 < t < a] - [a < t < 0]$. Then your derivation goes through unchanged till the point where you take the minimum. For $t_1 t_2 < 0$, $chi_(0, t_1)(t) chi_(0, t_2)(t) = 0$. For negative $t_1$ and $t_2$, the value which is closer to zero will be $max(t_1, t_2)$ instead of $min(t_1, t_2)$.
            – Maxim
            Jul 22 at 16:09













          up vote
          2
          down vote



          accepted







          up vote
          2
          down vote



          accepted






          First I do the inner integral:
          $$
          int_0^t_2 dt'' , e^-a(t_2-t'') , delta(t''-t')
          = int_-infty^infty dt'' , chi_[0, t_2](t'') , e^-a(t_2-t'') , delta(t''-t')
          = chi_[0, t_2](t') , e^-a(t_2-t')
          $$
          Here, for any set $A$, $chi_A(t) = 1$ if $tin A$, $chi_A(t)=0$ otherwise.



          Then the outer integral:
          $$
          I(t_1,t_2)
          = int_0^t_1 dt' , e^-a(t_1-t') , chi_[0, t_2](t') , e^-a(t_2-t') \
          = e^-a(t_1+t_2) int_0^t_1 dt' , e^2at' , chi_[0, t_2](t') \
          = e^-a(t_1+t_2) int_-infty^infty dt' , chi_[0, t_1](t') , e^2at' , chi_[0, t_2](t') \
          = e^-a(t_1+t_2) int_-infty^infty dt' , chi_[0, min(t_1,t_2)](t') , e^2at' \
          = e^-a(t_1+t_2) int_0^min(t_1,t_2) dt' , e^2at' \
          = e^-a(t_1+t_2) left[frac12a e^2at' right]_0^min(t_1,t_2) \
          = frac12a e^-a(t_1+t_2) left[e^2amin(t_1,t_2) -1 right]
          $$






          share|cite|improve this answer















          First I do the inner integral:
          $$
          int_0^t_2 dt'' , e^-a(t_2-t'') , delta(t''-t')
          = int_-infty^infty dt'' , chi_[0, t_2](t'') , e^-a(t_2-t'') , delta(t''-t')
          = chi_[0, t_2](t') , e^-a(t_2-t')
          $$
          Here, for any set $A$, $chi_A(t) = 1$ if $tin A$, $chi_A(t)=0$ otherwise.



          Then the outer integral:
          $$
          I(t_1,t_2)
          = int_0^t_1 dt' , e^-a(t_1-t') , chi_[0, t_2](t') , e^-a(t_2-t') \
          = e^-a(t_1+t_2) int_0^t_1 dt' , e^2at' , chi_[0, t_2](t') \
          = e^-a(t_1+t_2) int_-infty^infty dt' , chi_[0, t_1](t') , e^2at' , chi_[0, t_2](t') \
          = e^-a(t_1+t_2) int_-infty^infty dt' , chi_[0, min(t_1,t_2)](t') , e^2at' \
          = e^-a(t_1+t_2) int_0^min(t_1,t_2) dt' , e^2at' \
          = e^-a(t_1+t_2) left[frac12a e^2at' right]_0^min(t_1,t_2) \
          = frac12a e^-a(t_1+t_2) left[e^2amin(t_1,t_2) -1 right]
          $$







          share|cite|improve this answer















          share|cite|improve this answer



          share|cite|improve this answer








          edited Jul 22 at 15:39


























          answered Jul 22 at 12:18









          md2perpe

          5,85511022




          5,85511022







          • 1




            $A$ is just some set. I expanded on it somewhat in my post.
            – md2perpe
            Jul 22 at 12:23






          • 1




            It's similar: $chi_(0, infty)(t) = H(t).$ But $chi_(a,b)(t) = H(t-a) - H(t-b).$
            – md2perpe
            Jul 22 at 12:27






          • 1




            Look at the integral before. There we have both $chi_[0, t_1](t')$ and $chi_[0, t_2](t')$. For the product of these not vanish, we must have both $t' in [0, t_1]$ and $t' in [0, t_2],$ i.e. $t' in [0, t_1] cap [0, t_2] = [0, min(t_1,t_2)].$
            – md2perpe
            Jul 22 at 14:06






          • 1




            In $I(t_1, t_2)$, $e^-2 a t'$ in the second line should be $e^2 a t'$. Ultimately $I(t_1, t_2)$ should come out as $$cases frac 1 2a e^-a (t_1 + t_2) (e^2 a min(t_1, t_2) - 1) & $t_1 > 0 land t_2 > 0$ \ -frac 1 2a e^-a (t_1 + t_2) ( e^2 a max(t_1, t_2) - 1)& $t_1 < 0 land t_2 < 0$ \ 0 & otherwise.$$
            – Maxim
            Jul 22 at 15:20







          • 1




            Let's make up a signed indicator function, $chi_(0,a)(t) = [0 < t < a] - [a < t < 0]$. Then your derivation goes through unchanged till the point where you take the minimum. For $t_1 t_2 < 0$, $chi_(0, t_1)(t) chi_(0, t_2)(t) = 0$. For negative $t_1$ and $t_2$, the value which is closer to zero will be $max(t_1, t_2)$ instead of $min(t_1, t_2)$.
            – Maxim
            Jul 22 at 16:09













          • 1




            $A$ is just some set. I expanded on it somewhat in my post.
            – md2perpe
            Jul 22 at 12:23






          • 1




            It's similar: $chi_(0, infty)(t) = H(t).$ But $chi_(a,b)(t) = H(t-a) - H(t-b).$
            – md2perpe
            Jul 22 at 12:27






          • 1




            Look at the integral before. There we have both $chi_[0, t_1](t')$ and $chi_[0, t_2](t')$. For the product of these not vanish, we must have both $t' in [0, t_1]$ and $t' in [0, t_2],$ i.e. $t' in [0, t_1] cap [0, t_2] = [0, min(t_1,t_2)].$
            – md2perpe
            Jul 22 at 14:06






          • 1




            In $I(t_1, t_2)$, $e^-2 a t'$ in the second line should be $e^2 a t'$. Ultimately $I(t_1, t_2)$ should come out as $$cases frac 1 2a e^-a (t_1 + t_2) (e^2 a min(t_1, t_2) - 1) & $t_1 > 0 land t_2 > 0$ \ -frac 1 2a e^-a (t_1 + t_2) ( e^2 a max(t_1, t_2) - 1)& $t_1 < 0 land t_2 < 0$ \ 0 & otherwise.$$
            – Maxim
            Jul 22 at 15:20







          • 1




            Let's make up a signed indicator function, $chi_(0,a)(t) = [0 < t < a] - [a < t < 0]$. Then your derivation goes through unchanged till the point where you take the minimum. For $t_1 t_2 < 0$, $chi_(0, t_1)(t) chi_(0, t_2)(t) = 0$. For negative $t_1$ and $t_2$, the value which is closer to zero will be $max(t_1, t_2)$ instead of $min(t_1, t_2)$.
            – Maxim
            Jul 22 at 16:09








          1




          1




          $A$ is just some set. I expanded on it somewhat in my post.
          – md2perpe
          Jul 22 at 12:23




          $A$ is just some set. I expanded on it somewhat in my post.
          – md2perpe
          Jul 22 at 12:23




          1




          1




          It's similar: $chi_(0, infty)(t) = H(t).$ But $chi_(a,b)(t) = H(t-a) - H(t-b).$
          – md2perpe
          Jul 22 at 12:27




          It's similar: $chi_(0, infty)(t) = H(t).$ But $chi_(a,b)(t) = H(t-a) - H(t-b).$
          – md2perpe
          Jul 22 at 12:27




          1




          1




          Look at the integral before. There we have both $chi_[0, t_1](t')$ and $chi_[0, t_2](t')$. For the product of these not vanish, we must have both $t' in [0, t_1]$ and $t' in [0, t_2],$ i.e. $t' in [0, t_1] cap [0, t_2] = [0, min(t_1,t_2)].$
          – md2perpe
          Jul 22 at 14:06




          Look at the integral before. There we have both $chi_[0, t_1](t')$ and $chi_[0, t_2](t')$. For the product of these not vanish, we must have both $t' in [0, t_1]$ and $t' in [0, t_2],$ i.e. $t' in [0, t_1] cap [0, t_2] = [0, min(t_1,t_2)].$
          – md2perpe
          Jul 22 at 14:06




          1




          1




          In $I(t_1, t_2)$, $e^-2 a t'$ in the second line should be $e^2 a t'$. Ultimately $I(t_1, t_2)$ should come out as $$cases frac 1 2a e^-a (t_1 + t_2) (e^2 a min(t_1, t_2) - 1) & $t_1 > 0 land t_2 > 0$ \ -frac 1 2a e^-a (t_1 + t_2) ( e^2 a max(t_1, t_2) - 1)& $t_1 < 0 land t_2 < 0$ \ 0 & otherwise.$$
          – Maxim
          Jul 22 at 15:20





          In $I(t_1, t_2)$, $e^-2 a t'$ in the second line should be $e^2 a t'$. Ultimately $I(t_1, t_2)$ should come out as $$cases frac 1 2a e^-a (t_1 + t_2) (e^2 a min(t_1, t_2) - 1) & $t_1 > 0 land t_2 > 0$ \ -frac 1 2a e^-a (t_1 + t_2) ( e^2 a max(t_1, t_2) - 1)& $t_1 < 0 land t_2 < 0$ \ 0 & otherwise.$$
          – Maxim
          Jul 22 at 15:20





          1




          1




          Let's make up a signed indicator function, $chi_(0,a)(t) = [0 < t < a] - [a < t < 0]$. Then your derivation goes through unchanged till the point where you take the minimum. For $t_1 t_2 < 0$, $chi_(0, t_1)(t) chi_(0, t_2)(t) = 0$. For negative $t_1$ and $t_2$, the value which is closer to zero will be $max(t_1, t_2)$ instead of $min(t_1, t_2)$.
          – Maxim
          Jul 22 at 16:09





          Let's make up a signed indicator function, $chi_(0,a)(t) = [0 < t < a] - [a < t < 0]$. Then your derivation goes through unchanged till the point where you take the minimum. For $t_1 t_2 < 0$, $chi_(0, t_1)(t) chi_(0, t_2)(t) = 0$. For negative $t_1$ and $t_2$, the value which is closer to zero will be $max(t_1, t_2)$ instead of $min(t_1, t_2)$.
          – Maxim
          Jul 22 at 16:09













           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859326%2fintegration-involving-a-dirac-delta-function%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          Color the edges and diagonals of a regular polygon

          Relationship between determinant of matrix and determinant of adjoint?

          What is the equation of a 3D cone with generalised tilt?