Compute $sum_ngeq 1u_n$ where $u_n=frac1n$ if $nnotequiv 0pmod 3$ and $frac-2n$ if $nequiv 0pmod 3$.

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Compute $sum_ngeq 1u_n$ where $$u_n=begincases
frac1n&nnotequiv 0pmod 3\
frac-2n&nequiv 0pmod 3endcases.$$



I really tried many thing, but not concludive. I set $$v_p=frac13p-2+frac13p-2-frac23p.$$
Therefore
$$sum_kgeq 1^3nu_k=sum_k=1^n v_k=sum_k=1^nfrac13k+sum_k=1^nfrac13k-1+sum_k=1^nfrac13k-2.$$
Then I tried to get the same denominator, but I gut stuck because the $3k-1$ and $3k-2$.







share|cite|improve this question























    up vote
    0
    down vote

    favorite












    Compute $sum_ngeq 1u_n$ where $$u_n=begincases
    frac1n&nnotequiv 0pmod 3\
    frac-2n&nequiv 0pmod 3endcases.$$



    I really tried many thing, but not concludive. I set $$v_p=frac13p-2+frac13p-2-frac23p.$$
    Therefore
    $$sum_kgeq 1^3nu_k=sum_k=1^n v_k=sum_k=1^nfrac13k+sum_k=1^nfrac13k-1+sum_k=1^nfrac13k-2.$$
    Then I tried to get the same denominator, but I gut stuck because the $3k-1$ and $3k-2$.







    share|cite|improve this question





















      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Compute $sum_ngeq 1u_n$ where $$u_n=begincases
      frac1n&nnotequiv 0pmod 3\
      frac-2n&nequiv 0pmod 3endcases.$$



      I really tried many thing, but not concludive. I set $$v_p=frac13p-2+frac13p-2-frac23p.$$
      Therefore
      $$sum_kgeq 1^3nu_k=sum_k=1^n v_k=sum_k=1^nfrac13k+sum_k=1^nfrac13k-1+sum_k=1^nfrac13k-2.$$
      Then I tried to get the same denominator, but I gut stuck because the $3k-1$ and $3k-2$.







      share|cite|improve this question











      Compute $sum_ngeq 1u_n$ where $$u_n=begincases
      frac1n&nnotequiv 0pmod 3\
      frac-2n&nequiv 0pmod 3endcases.$$



      I really tried many thing, but not concludive. I set $$v_p=frac13p-2+frac13p-2-frac23p.$$
      Therefore
      $$sum_kgeq 1^3nu_k=sum_k=1^n v_k=sum_k=1^nfrac13k+sum_k=1^nfrac13k-1+sum_k=1^nfrac13k-2.$$
      Then I tried to get the same denominator, but I gut stuck because the $3k-1$ and $3k-2$.









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked Jul 22 at 12:59









      MathBeginner

      707312




      707312




















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          1
          down vote













          You mean
          $$sum_k=1^3nu_k=sum_k=1^nfrac13k-2
          +sum_k=1^nfrac13k-1-2sum_k=1^nfrac13k
          =H_3n-H_n$$
          where $H_n=sum_k=1^n1/k$. Then $H_n=ln n+gamma+o(1)$ and so
          $$sum_k=1^3nu_k=ln 3+o(1)$$
          etc.






          share|cite|improve this answer




























            up vote
            0
            down vote













            Hint



            You also have $$v_p=frac13k-2+frac13k-1+frac13k-frac33k,$$
            i.e. $$sum_k=1^n v_k=sum_k=1^3nfrac1k-sum_k=1^nfrac1k.$$






            share|cite|improve this answer





















              Your Answer




              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: false,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );








               

              draft saved


              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859369%2fcompute-sum-n-geq-1u-n-where-u-n-frac1n-if-n-not-equiv-0-pmod-3-an%23new-answer', 'question_page');

              );

              Post as a guest






























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              1
              down vote













              You mean
              $$sum_k=1^3nu_k=sum_k=1^nfrac13k-2
              +sum_k=1^nfrac13k-1-2sum_k=1^nfrac13k
              =H_3n-H_n$$
              where $H_n=sum_k=1^n1/k$. Then $H_n=ln n+gamma+o(1)$ and so
              $$sum_k=1^3nu_k=ln 3+o(1)$$
              etc.






              share|cite|improve this answer

























                up vote
                1
                down vote













                You mean
                $$sum_k=1^3nu_k=sum_k=1^nfrac13k-2
                +sum_k=1^nfrac13k-1-2sum_k=1^nfrac13k
                =H_3n-H_n$$
                where $H_n=sum_k=1^n1/k$. Then $H_n=ln n+gamma+o(1)$ and so
                $$sum_k=1^3nu_k=ln 3+o(1)$$
                etc.






                share|cite|improve this answer























                  up vote
                  1
                  down vote










                  up vote
                  1
                  down vote









                  You mean
                  $$sum_k=1^3nu_k=sum_k=1^nfrac13k-2
                  +sum_k=1^nfrac13k-1-2sum_k=1^nfrac13k
                  =H_3n-H_n$$
                  where $H_n=sum_k=1^n1/k$. Then $H_n=ln n+gamma+o(1)$ and so
                  $$sum_k=1^3nu_k=ln 3+o(1)$$
                  etc.






                  share|cite|improve this answer













                  You mean
                  $$sum_k=1^3nu_k=sum_k=1^nfrac13k-2
                  +sum_k=1^nfrac13k-1-2sum_k=1^nfrac13k
                  =H_3n-H_n$$
                  where $H_n=sum_k=1^n1/k$. Then $H_n=ln n+gamma+o(1)$ and so
                  $$sum_k=1^3nu_k=ln 3+o(1)$$
                  etc.







                  share|cite|improve this answer













                  share|cite|improve this answer



                  share|cite|improve this answer











                  answered Jul 22 at 13:04









                  Lord Shark the Unknown

                  85.2k950111




                  85.2k950111




















                      up vote
                      0
                      down vote













                      Hint



                      You also have $$v_p=frac13k-2+frac13k-1+frac13k-frac33k,$$
                      i.e. $$sum_k=1^n v_k=sum_k=1^3nfrac1k-sum_k=1^nfrac1k.$$






                      share|cite|improve this answer

























                        up vote
                        0
                        down vote













                        Hint



                        You also have $$v_p=frac13k-2+frac13k-1+frac13k-frac33k,$$
                        i.e. $$sum_k=1^n v_k=sum_k=1^3nfrac1k-sum_k=1^nfrac1k.$$






                        share|cite|improve this answer























                          up vote
                          0
                          down vote










                          up vote
                          0
                          down vote









                          Hint



                          You also have $$v_p=frac13k-2+frac13k-1+frac13k-frac33k,$$
                          i.e. $$sum_k=1^n v_k=sum_k=1^3nfrac1k-sum_k=1^nfrac1k.$$






                          share|cite|improve this answer













                          Hint



                          You also have $$v_p=frac13k-2+frac13k-1+frac13k-frac33k,$$
                          i.e. $$sum_k=1^n v_k=sum_k=1^3nfrac1k-sum_k=1^nfrac1k.$$







                          share|cite|improve this answer













                          share|cite|improve this answer



                          share|cite|improve this answer











                          answered Jul 22 at 13:02









                          Surb

                          36.3k84274




                          36.3k84274






















                               

                              draft saved


                              draft discarded


























                               


                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859369%2fcompute-sum-n-geq-1u-n-where-u-n-frac1n-if-n-not-equiv-0-pmod-3-an%23new-answer', 'question_page');

                              );

                              Post as a guest













































































                              Comments

                              Popular posts from this blog

                              Color the edges and diagonals of a regular polygon

                              Relationship between determinant of matrix and determinant of adjoint?

                              What is the equation of a 3D cone with generalised tilt?