Compute $sum_ngeq 1u_n$ where $u_n=frac1n$ if $nnotequiv 0pmod 3$ and $frac-2n$ if $nequiv 0pmod 3$.
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Compute $sum_ngeq 1u_n$ where $$u_n=begincases
frac1n&nnotequiv 0pmod 3\
frac-2n&nequiv 0pmod 3endcases.$$
I really tried many thing, but not concludive. I set $$v_p=frac13p-2+frac13p-2-frac23p.$$
Therefore
$$sum_kgeq 1^3nu_k=sum_k=1^n v_k=sum_k=1^nfrac13k+sum_k=1^nfrac13k-1+sum_k=1^nfrac13k-2.$$
Then I tried to get the same denominator, but I gut stuck because the $3k-1$ and $3k-2$.
sequences-and-series
add a comment |Â
up vote
0
down vote
favorite
Compute $sum_ngeq 1u_n$ where $$u_n=begincases
frac1n&nnotequiv 0pmod 3\
frac-2n&nequiv 0pmod 3endcases.$$
I really tried many thing, but not concludive. I set $$v_p=frac13p-2+frac13p-2-frac23p.$$
Therefore
$$sum_kgeq 1^3nu_k=sum_k=1^n v_k=sum_k=1^nfrac13k+sum_k=1^nfrac13k-1+sum_k=1^nfrac13k-2.$$
Then I tried to get the same denominator, but I gut stuck because the $3k-1$ and $3k-2$.
sequences-and-series
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Compute $sum_ngeq 1u_n$ where $$u_n=begincases
frac1n&nnotequiv 0pmod 3\
frac-2n&nequiv 0pmod 3endcases.$$
I really tried many thing, but not concludive. I set $$v_p=frac13p-2+frac13p-2-frac23p.$$
Therefore
$$sum_kgeq 1^3nu_k=sum_k=1^n v_k=sum_k=1^nfrac13k+sum_k=1^nfrac13k-1+sum_k=1^nfrac13k-2.$$
Then I tried to get the same denominator, but I gut stuck because the $3k-1$ and $3k-2$.
sequences-and-series
Compute $sum_ngeq 1u_n$ where $$u_n=begincases
frac1n&nnotequiv 0pmod 3\
frac-2n&nequiv 0pmod 3endcases.$$
I really tried many thing, but not concludive. I set $$v_p=frac13p-2+frac13p-2-frac23p.$$
Therefore
$$sum_kgeq 1^3nu_k=sum_k=1^n v_k=sum_k=1^nfrac13k+sum_k=1^nfrac13k-1+sum_k=1^nfrac13k-2.$$
Then I tried to get the same denominator, but I gut stuck because the $3k-1$ and $3k-2$.
sequences-and-series
asked Jul 22 at 12:59
MathBeginner
707312
707312
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
1
down vote
You mean
$$sum_k=1^3nu_k=sum_k=1^nfrac13k-2
+sum_k=1^nfrac13k-1-2sum_k=1^nfrac13k
=H_3n-H_n$$
where $H_n=sum_k=1^n1/k$. Then $H_n=ln n+gamma+o(1)$ and so
$$sum_k=1^3nu_k=ln 3+o(1)$$
etc.
add a comment |Â
up vote
0
down vote
Hint
You also have $$v_p=frac13k-2+frac13k-1+frac13k-frac33k,$$
i.e. $$sum_k=1^n v_k=sum_k=1^3nfrac1k-sum_k=1^nfrac1k.$$
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
You mean
$$sum_k=1^3nu_k=sum_k=1^nfrac13k-2
+sum_k=1^nfrac13k-1-2sum_k=1^nfrac13k
=H_3n-H_n$$
where $H_n=sum_k=1^n1/k$. Then $H_n=ln n+gamma+o(1)$ and so
$$sum_k=1^3nu_k=ln 3+o(1)$$
etc.
add a comment |Â
up vote
1
down vote
You mean
$$sum_k=1^3nu_k=sum_k=1^nfrac13k-2
+sum_k=1^nfrac13k-1-2sum_k=1^nfrac13k
=H_3n-H_n$$
where $H_n=sum_k=1^n1/k$. Then $H_n=ln n+gamma+o(1)$ and so
$$sum_k=1^3nu_k=ln 3+o(1)$$
etc.
add a comment |Â
up vote
1
down vote
up vote
1
down vote
You mean
$$sum_k=1^3nu_k=sum_k=1^nfrac13k-2
+sum_k=1^nfrac13k-1-2sum_k=1^nfrac13k
=H_3n-H_n$$
where $H_n=sum_k=1^n1/k$. Then $H_n=ln n+gamma+o(1)$ and so
$$sum_k=1^3nu_k=ln 3+o(1)$$
etc.
You mean
$$sum_k=1^3nu_k=sum_k=1^nfrac13k-2
+sum_k=1^nfrac13k-1-2sum_k=1^nfrac13k
=H_3n-H_n$$
where $H_n=sum_k=1^n1/k$. Then $H_n=ln n+gamma+o(1)$ and so
$$sum_k=1^3nu_k=ln 3+o(1)$$
etc.
answered Jul 22 at 13:04
Lord Shark the Unknown
85.2k950111
85.2k950111
add a comment |Â
add a comment |Â
up vote
0
down vote
Hint
You also have $$v_p=frac13k-2+frac13k-1+frac13k-frac33k,$$
i.e. $$sum_k=1^n v_k=sum_k=1^3nfrac1k-sum_k=1^nfrac1k.$$
add a comment |Â
up vote
0
down vote
Hint
You also have $$v_p=frac13k-2+frac13k-1+frac13k-frac33k,$$
i.e. $$sum_k=1^n v_k=sum_k=1^3nfrac1k-sum_k=1^nfrac1k.$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Hint
You also have $$v_p=frac13k-2+frac13k-1+frac13k-frac33k,$$
i.e. $$sum_k=1^n v_k=sum_k=1^3nfrac1k-sum_k=1^nfrac1k.$$
Hint
You also have $$v_p=frac13k-2+frac13k-1+frac13k-frac33k,$$
i.e. $$sum_k=1^n v_k=sum_k=1^3nfrac1k-sum_k=1^nfrac1k.$$
answered Jul 22 at 13:02
Surb
36.3k84274
36.3k84274
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859369%2fcompute-sum-n-geq-1u-n-where-u-n-frac1n-if-n-not-equiv-0-pmod-3-an%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password