Prove that $3^1004+2^2009-3^502cdot 2^1005gt 2009^182$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite
2













Prove that $3^1004+2^2009-3^502cdot 2^1005gt 2009^182$.




My try:



we have $$2^11gt 2009$$



Taking power of $182$ both sides we get



$$2^2002 gt 2009^182$$



Now



$$left(3^1004right)+left(2^2009right)-left(3^502right)left(2^1005right)=2^2002+(127)2^2002+left(3^1004right)-left(3^502right)left(2^1005right)=2^2002+A$$



Now it suffices to prove $$A gt 0$$ where



$$A=(127)2^2002+left(3^1004right)-left(3^502right)left(2^1005right)$$



any hint?







share|cite|improve this question





















  • I am not sure if this helps but the L.H.S. almost equals a binom. To be exact $(3^502-2^1005)^2=3^1004+2^2010-2cdot 3^5022^1005$
    – mrtaurho
    Jul 22 at 17:55










  • youtube.com/watch?v=8-9scNP5KWk
    – Ed Pegg
    Jul 22 at 17:55














up vote
2
down vote

favorite
2













Prove that $3^1004+2^2009-3^502cdot 2^1005gt 2009^182$.




My try:



we have $$2^11gt 2009$$



Taking power of $182$ both sides we get



$$2^2002 gt 2009^182$$



Now



$$left(3^1004right)+left(2^2009right)-left(3^502right)left(2^1005right)=2^2002+(127)2^2002+left(3^1004right)-left(3^502right)left(2^1005right)=2^2002+A$$



Now it suffices to prove $$A gt 0$$ where



$$A=(127)2^2002+left(3^1004right)-left(3^502right)left(2^1005right)$$



any hint?







share|cite|improve this question





















  • I am not sure if this helps but the L.H.S. almost equals a binom. To be exact $(3^502-2^1005)^2=3^1004+2^2010-2cdot 3^5022^1005$
    – mrtaurho
    Jul 22 at 17:55










  • youtube.com/watch?v=8-9scNP5KWk
    – Ed Pegg
    Jul 22 at 17:55












up vote
2
down vote

favorite
2









up vote
2
down vote

favorite
2






2






Prove that $3^1004+2^2009-3^502cdot 2^1005gt 2009^182$.




My try:



we have $$2^11gt 2009$$



Taking power of $182$ both sides we get



$$2^2002 gt 2009^182$$



Now



$$left(3^1004right)+left(2^2009right)-left(3^502right)left(2^1005right)=2^2002+(127)2^2002+left(3^1004right)-left(3^502right)left(2^1005right)=2^2002+A$$



Now it suffices to prove $$A gt 0$$ where



$$A=(127)2^2002+left(3^1004right)-left(3^502right)left(2^1005right)$$



any hint?







share|cite|improve this question














Prove that $3^1004+2^2009-3^502cdot 2^1005gt 2009^182$.




My try:



we have $$2^11gt 2009$$



Taking power of $182$ both sides we get



$$2^2002 gt 2009^182$$



Now



$$left(3^1004right)+left(2^2009right)-left(3^502right)left(2^1005right)=2^2002+(127)2^2002+left(3^1004right)-left(3^502right)left(2^1005right)=2^2002+A$$



Now it suffices to prove $$A gt 0$$ where



$$A=(127)2^2002+left(3^1004right)-left(3^502right)left(2^1005right)$$



any hint?









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 22 at 17:53









Cave Johnson

3,5871326




3,5871326









asked Jul 22 at 17:50









Ekaveera Kumar Sharma

5,15611122




5,15611122











  • I am not sure if this helps but the L.H.S. almost equals a binom. To be exact $(3^502-2^1005)^2=3^1004+2^2010-2cdot 3^5022^1005$
    – mrtaurho
    Jul 22 at 17:55










  • youtube.com/watch?v=8-9scNP5KWk
    – Ed Pegg
    Jul 22 at 17:55
















  • I am not sure if this helps but the L.H.S. almost equals a binom. To be exact $(3^502-2^1005)^2=3^1004+2^2010-2cdot 3^5022^1005$
    – mrtaurho
    Jul 22 at 17:55










  • youtube.com/watch?v=8-9scNP5KWk
    – Ed Pegg
    Jul 22 at 17:55















I am not sure if this helps but the L.H.S. almost equals a binom. To be exact $(3^502-2^1005)^2=3^1004+2^2010-2cdot 3^5022^1005$
– mrtaurho
Jul 22 at 17:55




I am not sure if this helps but the L.H.S. almost equals a binom. To be exact $(3^502-2^1005)^2=3^1004+2^2010-2cdot 3^5022^1005$
– mrtaurho
Jul 22 at 17:55












youtube.com/watch?v=8-9scNP5KWk
– Ed Pegg
Jul 22 at 17:55




youtube.com/watch?v=8-9scNP5KWk
– Ed Pegg
Jul 22 at 17:55










1 Answer
1






active

oldest

votes

















up vote
8
down vote



accepted










$beginalign
3^1004+2^2009-3^502cdot 2^1005 &= 3^1004+2^2008-3^502cdot 2^1005 +2^2008\
&= (2^1004-3^502)^2 +2^2008\
&gt 2^2008\
&gt 2009^182 & smalltext(per the OP argument)\
endalign$






share|cite|improve this answer























  • Crystal clear solution, thanks
    – Ekaveera Kumar Sharma
    Jul 22 at 18:12






  • 1




    Why is it intuitively obvious that $2^2008 > 2009^182$?
    – fleablood
    Jul 22 at 18:16






  • 1




    @fleablood Note that $2^2008=(2^11)^frac200811=(2048)^186.545454...>(2048)^186>(2009)^186$.
    – MathOverview
    Jul 22 at 18:21







  • 1




    Also the OP's post already mentions that $2^2002 > 2009^182$
    – Sil
    Jul 22 at 18:26










  • Yeah.... sure.... It just... I dunno.... as a problem it lack elegance. I mean.... what's the point? "Also the OP's post already mentions that 22002>2009182 " Oh, why so it does. Question withdrawn.
    – fleablood
    Jul 22 at 18:28










Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);








 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859624%2fprove-that-3100422009-3502-cdot-21005-gt-2009182%23new-answer', 'question_page');

);

Post as a guest






























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
8
down vote



accepted










$beginalign
3^1004+2^2009-3^502cdot 2^1005 &= 3^1004+2^2008-3^502cdot 2^1005 +2^2008\
&= (2^1004-3^502)^2 +2^2008\
&gt 2^2008\
&gt 2009^182 & smalltext(per the OP argument)\
endalign$






share|cite|improve this answer























  • Crystal clear solution, thanks
    – Ekaveera Kumar Sharma
    Jul 22 at 18:12






  • 1




    Why is it intuitively obvious that $2^2008 > 2009^182$?
    – fleablood
    Jul 22 at 18:16






  • 1




    @fleablood Note that $2^2008=(2^11)^frac200811=(2048)^186.545454...>(2048)^186>(2009)^186$.
    – MathOverview
    Jul 22 at 18:21







  • 1




    Also the OP's post already mentions that $2^2002 > 2009^182$
    – Sil
    Jul 22 at 18:26










  • Yeah.... sure.... It just... I dunno.... as a problem it lack elegance. I mean.... what's the point? "Also the OP's post already mentions that 22002>2009182 " Oh, why so it does. Question withdrawn.
    – fleablood
    Jul 22 at 18:28














up vote
8
down vote



accepted










$beginalign
3^1004+2^2009-3^502cdot 2^1005 &= 3^1004+2^2008-3^502cdot 2^1005 +2^2008\
&= (2^1004-3^502)^2 +2^2008\
&gt 2^2008\
&gt 2009^182 & smalltext(per the OP argument)\
endalign$






share|cite|improve this answer























  • Crystal clear solution, thanks
    – Ekaveera Kumar Sharma
    Jul 22 at 18:12






  • 1




    Why is it intuitively obvious that $2^2008 > 2009^182$?
    – fleablood
    Jul 22 at 18:16






  • 1




    @fleablood Note that $2^2008=(2^11)^frac200811=(2048)^186.545454...>(2048)^186>(2009)^186$.
    – MathOverview
    Jul 22 at 18:21







  • 1




    Also the OP's post already mentions that $2^2002 > 2009^182$
    – Sil
    Jul 22 at 18:26










  • Yeah.... sure.... It just... I dunno.... as a problem it lack elegance. I mean.... what's the point? "Also the OP's post already mentions that 22002>2009182 " Oh, why so it does. Question withdrawn.
    – fleablood
    Jul 22 at 18:28












up vote
8
down vote



accepted







up vote
8
down vote



accepted






$beginalign
3^1004+2^2009-3^502cdot 2^1005 &= 3^1004+2^2008-3^502cdot 2^1005 +2^2008\
&= (2^1004-3^502)^2 +2^2008\
&gt 2^2008\
&gt 2009^182 & smalltext(per the OP argument)\
endalign$






share|cite|improve this answer















$beginalign
3^1004+2^2009-3^502cdot 2^1005 &= 3^1004+2^2008-3^502cdot 2^1005 +2^2008\
&= (2^1004-3^502)^2 +2^2008\
&gt 2^2008\
&gt 2009^182 & smalltext(per the OP argument)\
endalign$







share|cite|improve this answer















share|cite|improve this answer



share|cite|improve this answer








edited Jul 22 at 20:11


























answered Jul 22 at 18:10









Joffan

31.8k43169




31.8k43169











  • Crystal clear solution, thanks
    – Ekaveera Kumar Sharma
    Jul 22 at 18:12






  • 1




    Why is it intuitively obvious that $2^2008 > 2009^182$?
    – fleablood
    Jul 22 at 18:16






  • 1




    @fleablood Note that $2^2008=(2^11)^frac200811=(2048)^186.545454...>(2048)^186>(2009)^186$.
    – MathOverview
    Jul 22 at 18:21







  • 1




    Also the OP's post already mentions that $2^2002 > 2009^182$
    – Sil
    Jul 22 at 18:26










  • Yeah.... sure.... It just... I dunno.... as a problem it lack elegance. I mean.... what's the point? "Also the OP's post already mentions that 22002>2009182 " Oh, why so it does. Question withdrawn.
    – fleablood
    Jul 22 at 18:28
















  • Crystal clear solution, thanks
    – Ekaveera Kumar Sharma
    Jul 22 at 18:12






  • 1




    Why is it intuitively obvious that $2^2008 > 2009^182$?
    – fleablood
    Jul 22 at 18:16






  • 1




    @fleablood Note that $2^2008=(2^11)^frac200811=(2048)^186.545454...>(2048)^186>(2009)^186$.
    – MathOverview
    Jul 22 at 18:21







  • 1




    Also the OP's post already mentions that $2^2002 > 2009^182$
    – Sil
    Jul 22 at 18:26










  • Yeah.... sure.... It just... I dunno.... as a problem it lack elegance. I mean.... what's the point? "Also the OP's post already mentions that 22002>2009182 " Oh, why so it does. Question withdrawn.
    – fleablood
    Jul 22 at 18:28















Crystal clear solution, thanks
– Ekaveera Kumar Sharma
Jul 22 at 18:12




Crystal clear solution, thanks
– Ekaveera Kumar Sharma
Jul 22 at 18:12




1




1




Why is it intuitively obvious that $2^2008 > 2009^182$?
– fleablood
Jul 22 at 18:16




Why is it intuitively obvious that $2^2008 > 2009^182$?
– fleablood
Jul 22 at 18:16




1




1




@fleablood Note that $2^2008=(2^11)^frac200811=(2048)^186.545454...>(2048)^186>(2009)^186$.
– MathOverview
Jul 22 at 18:21





@fleablood Note that $2^2008=(2^11)^frac200811=(2048)^186.545454...>(2048)^186>(2009)^186$.
– MathOverview
Jul 22 at 18:21





1




1




Also the OP's post already mentions that $2^2002 > 2009^182$
– Sil
Jul 22 at 18:26




Also the OP's post already mentions that $2^2002 > 2009^182$
– Sil
Jul 22 at 18:26












Yeah.... sure.... It just... I dunno.... as a problem it lack elegance. I mean.... what's the point? "Also the OP's post already mentions that 22002>2009182 " Oh, why so it does. Question withdrawn.
– fleablood
Jul 22 at 18:28




Yeah.... sure.... It just... I dunno.... as a problem it lack elegance. I mean.... what's the point? "Also the OP's post already mentions that 22002>2009182 " Oh, why so it does. Question withdrawn.
– fleablood
Jul 22 at 18:28












 

draft saved


draft discarded


























 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859624%2fprove-that-3100422009-3502-cdot-21005-gt-2009182%23new-answer', 'question_page');

);

Post as a guest













































































Comments

Popular posts from this blog

What is the equation of a 3D cone with generalised tilt?

Relationship between determinant of matrix and determinant of adjoint?

Color the edges and diagonals of a regular polygon