Prove that $3^1004+2^2009-3^502cdot 2^1005gt 2009^182$
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
Prove that $3^1004+2^2009-3^502cdot 2^1005gt 2009^182$.
My try:
we have $$2^11gt 2009$$
Taking power of $182$ both sides we get
$$2^2002 gt 2009^182$$
Now
$$left(3^1004right)+left(2^2009right)-left(3^502right)left(2^1005right)=2^2002+(127)2^2002+left(3^1004right)-left(3^502right)left(2^1005right)=2^2002+A$$
Now it suffices to prove $$A gt 0$$ where
$$A=(127)2^2002+left(3^1004right)-left(3^502right)left(2^1005right)$$
any hint?
algebra-precalculus inequality
add a comment |Â
up vote
2
down vote
favorite
Prove that $3^1004+2^2009-3^502cdot 2^1005gt 2009^182$.
My try:
we have $$2^11gt 2009$$
Taking power of $182$ both sides we get
$$2^2002 gt 2009^182$$
Now
$$left(3^1004right)+left(2^2009right)-left(3^502right)left(2^1005right)=2^2002+(127)2^2002+left(3^1004right)-left(3^502right)left(2^1005right)=2^2002+A$$
Now it suffices to prove $$A gt 0$$ where
$$A=(127)2^2002+left(3^1004right)-left(3^502right)left(2^1005right)$$
any hint?
algebra-precalculus inequality
I am not sure if this helps but the L.H.S. almost equals a binom. To be exact $(3^502-2^1005)^2=3^1004+2^2010-2cdot 3^5022^1005$
â mrtaurho
Jul 22 at 17:55
youtube.com/watch?v=8-9scNP5KWk
â Ed Pegg
Jul 22 at 17:55
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Prove that $3^1004+2^2009-3^502cdot 2^1005gt 2009^182$.
My try:
we have $$2^11gt 2009$$
Taking power of $182$ both sides we get
$$2^2002 gt 2009^182$$
Now
$$left(3^1004right)+left(2^2009right)-left(3^502right)left(2^1005right)=2^2002+(127)2^2002+left(3^1004right)-left(3^502right)left(2^1005right)=2^2002+A$$
Now it suffices to prove $$A gt 0$$ where
$$A=(127)2^2002+left(3^1004right)-left(3^502right)left(2^1005right)$$
any hint?
algebra-precalculus inequality
Prove that $3^1004+2^2009-3^502cdot 2^1005gt 2009^182$.
My try:
we have $$2^11gt 2009$$
Taking power of $182$ both sides we get
$$2^2002 gt 2009^182$$
Now
$$left(3^1004right)+left(2^2009right)-left(3^502right)left(2^1005right)=2^2002+(127)2^2002+left(3^1004right)-left(3^502right)left(2^1005right)=2^2002+A$$
Now it suffices to prove $$A gt 0$$ where
$$A=(127)2^2002+left(3^1004right)-left(3^502right)left(2^1005right)$$
any hint?
algebra-precalculus inequality
edited Jul 22 at 17:53
Cave Johnson
3,5871326
3,5871326
asked Jul 22 at 17:50
Ekaveera Kumar Sharma
5,15611122
5,15611122
I am not sure if this helps but the L.H.S. almost equals a binom. To be exact $(3^502-2^1005)^2=3^1004+2^2010-2cdot 3^5022^1005$
â mrtaurho
Jul 22 at 17:55
youtube.com/watch?v=8-9scNP5KWk
â Ed Pegg
Jul 22 at 17:55
add a comment |Â
I am not sure if this helps but the L.H.S. almost equals a binom. To be exact $(3^502-2^1005)^2=3^1004+2^2010-2cdot 3^5022^1005$
â mrtaurho
Jul 22 at 17:55
youtube.com/watch?v=8-9scNP5KWk
â Ed Pegg
Jul 22 at 17:55
I am not sure if this helps but the L.H.S. almost equals a binom. To be exact $(3^502-2^1005)^2=3^1004+2^2010-2cdot 3^5022^1005$
â mrtaurho
Jul 22 at 17:55
I am not sure if this helps but the L.H.S. almost equals a binom. To be exact $(3^502-2^1005)^2=3^1004+2^2010-2cdot 3^5022^1005$
â mrtaurho
Jul 22 at 17:55
youtube.com/watch?v=8-9scNP5KWk
â Ed Pegg
Jul 22 at 17:55
youtube.com/watch?v=8-9scNP5KWk
â Ed Pegg
Jul 22 at 17:55
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
8
down vote
accepted
$beginalign
3^1004+2^2009-3^502cdot 2^1005 &= 3^1004+2^2008-3^502cdot 2^1005 +2^2008\
&= (2^1004-3^502)^2 +2^2008\
> 2^2008\
> 2009^182 & smalltext(per the OP argument)\
endalign$
Crystal clear solution, thanks
â Ekaveera Kumar Sharma
Jul 22 at 18:12
1
Why is it intuitively obvious that $2^2008 > 2009^182$?
â fleablood
Jul 22 at 18:16
1
@fleablood Note that $2^2008=(2^11)^frac200811=(2048)^186.545454...>(2048)^186>(2009)^186$.
â MathOverview
Jul 22 at 18:21
1
Also the OP's post already mentions that $2^2002 > 2009^182$
â Sil
Jul 22 at 18:26
Yeah.... sure.... It just... I dunno.... as a problem it lack elegance. I mean.... what's the point? "Also the OP's post already mentions that 22002>2009182 " Oh, why so it does. Question withdrawn.
â fleablood
Jul 22 at 18:28
 |Â
show 3 more comments
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
8
down vote
accepted
$beginalign
3^1004+2^2009-3^502cdot 2^1005 &= 3^1004+2^2008-3^502cdot 2^1005 +2^2008\
&= (2^1004-3^502)^2 +2^2008\
> 2^2008\
> 2009^182 & smalltext(per the OP argument)\
endalign$
Crystal clear solution, thanks
â Ekaveera Kumar Sharma
Jul 22 at 18:12
1
Why is it intuitively obvious that $2^2008 > 2009^182$?
â fleablood
Jul 22 at 18:16
1
@fleablood Note that $2^2008=(2^11)^frac200811=(2048)^186.545454...>(2048)^186>(2009)^186$.
â MathOverview
Jul 22 at 18:21
1
Also the OP's post already mentions that $2^2002 > 2009^182$
â Sil
Jul 22 at 18:26
Yeah.... sure.... It just... I dunno.... as a problem it lack elegance. I mean.... what's the point? "Also the OP's post already mentions that 22002>2009182 " Oh, why so it does. Question withdrawn.
â fleablood
Jul 22 at 18:28
 |Â
show 3 more comments
up vote
8
down vote
accepted
$beginalign
3^1004+2^2009-3^502cdot 2^1005 &= 3^1004+2^2008-3^502cdot 2^1005 +2^2008\
&= (2^1004-3^502)^2 +2^2008\
> 2^2008\
> 2009^182 & smalltext(per the OP argument)\
endalign$
Crystal clear solution, thanks
â Ekaveera Kumar Sharma
Jul 22 at 18:12
1
Why is it intuitively obvious that $2^2008 > 2009^182$?
â fleablood
Jul 22 at 18:16
1
@fleablood Note that $2^2008=(2^11)^frac200811=(2048)^186.545454...>(2048)^186>(2009)^186$.
â MathOverview
Jul 22 at 18:21
1
Also the OP's post already mentions that $2^2002 > 2009^182$
â Sil
Jul 22 at 18:26
Yeah.... sure.... It just... I dunno.... as a problem it lack elegance. I mean.... what's the point? "Also the OP's post already mentions that 22002>2009182 " Oh, why so it does. Question withdrawn.
â fleablood
Jul 22 at 18:28
 |Â
show 3 more comments
up vote
8
down vote
accepted
up vote
8
down vote
accepted
$beginalign
3^1004+2^2009-3^502cdot 2^1005 &= 3^1004+2^2008-3^502cdot 2^1005 +2^2008\
&= (2^1004-3^502)^2 +2^2008\
> 2^2008\
> 2009^182 & smalltext(per the OP argument)\
endalign$
$beginalign
3^1004+2^2009-3^502cdot 2^1005 &= 3^1004+2^2008-3^502cdot 2^1005 +2^2008\
&= (2^1004-3^502)^2 +2^2008\
> 2^2008\
> 2009^182 & smalltext(per the OP argument)\
endalign$
edited Jul 22 at 20:11
answered Jul 22 at 18:10
Joffan
31.8k43169
31.8k43169
Crystal clear solution, thanks
â Ekaveera Kumar Sharma
Jul 22 at 18:12
1
Why is it intuitively obvious that $2^2008 > 2009^182$?
â fleablood
Jul 22 at 18:16
1
@fleablood Note that $2^2008=(2^11)^frac200811=(2048)^186.545454...>(2048)^186>(2009)^186$.
â MathOverview
Jul 22 at 18:21
1
Also the OP's post already mentions that $2^2002 > 2009^182$
â Sil
Jul 22 at 18:26
Yeah.... sure.... It just... I dunno.... as a problem it lack elegance. I mean.... what's the point? "Also the OP's post already mentions that 22002>2009182 " Oh, why so it does. Question withdrawn.
â fleablood
Jul 22 at 18:28
 |Â
show 3 more comments
Crystal clear solution, thanks
â Ekaveera Kumar Sharma
Jul 22 at 18:12
1
Why is it intuitively obvious that $2^2008 > 2009^182$?
â fleablood
Jul 22 at 18:16
1
@fleablood Note that $2^2008=(2^11)^frac200811=(2048)^186.545454...>(2048)^186>(2009)^186$.
â MathOverview
Jul 22 at 18:21
1
Also the OP's post already mentions that $2^2002 > 2009^182$
â Sil
Jul 22 at 18:26
Yeah.... sure.... It just... I dunno.... as a problem it lack elegance. I mean.... what's the point? "Also the OP's post already mentions that 22002>2009182 " Oh, why so it does. Question withdrawn.
â fleablood
Jul 22 at 18:28
Crystal clear solution, thanks
â Ekaveera Kumar Sharma
Jul 22 at 18:12
Crystal clear solution, thanks
â Ekaveera Kumar Sharma
Jul 22 at 18:12
1
1
Why is it intuitively obvious that $2^2008 > 2009^182$?
â fleablood
Jul 22 at 18:16
Why is it intuitively obvious that $2^2008 > 2009^182$?
â fleablood
Jul 22 at 18:16
1
1
@fleablood Note that $2^2008=(2^11)^frac200811=(2048)^186.545454...>(2048)^186>(2009)^186$.
â MathOverview
Jul 22 at 18:21
@fleablood Note that $2^2008=(2^11)^frac200811=(2048)^186.545454...>(2048)^186>(2009)^186$.
â MathOverview
Jul 22 at 18:21
1
1
Also the OP's post already mentions that $2^2002 > 2009^182$
â Sil
Jul 22 at 18:26
Also the OP's post already mentions that $2^2002 > 2009^182$
â Sil
Jul 22 at 18:26
Yeah.... sure.... It just... I dunno.... as a problem it lack elegance. I mean.... what's the point? "Also the OP's post already mentions that 22002>2009182 " Oh, why so it does. Question withdrawn.
â fleablood
Jul 22 at 18:28
Yeah.... sure.... It just... I dunno.... as a problem it lack elegance. I mean.... what's the point? "Also the OP's post already mentions that 22002>2009182 " Oh, why so it does. Question withdrawn.
â fleablood
Jul 22 at 18:28
 |Â
show 3 more comments
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859624%2fprove-that-3100422009-3502-cdot-21005-gt-2009182%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
I am not sure if this helps but the L.H.S. almost equals a binom. To be exact $(3^502-2^1005)^2=3^1004+2^2010-2cdot 3^5022^1005$
â mrtaurho
Jul 22 at 17:55
youtube.com/watch?v=8-9scNP5KWk
â Ed Pegg
Jul 22 at 17:55