Partial sums of the series $sumlimits_kgeq1frac1sqrt2k+sqrt4k^2-1$
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
The series $sumlimits_k=1^inftyfrac1sqrt2k+sqrt4k^2-1$ is divergent. I am interested in its partial sums to do some computations based on them.
I tried to multiply $sqrt2k+sqrt4k^2-1$ by $sqrt2k-sqrt4k^2-1$ and to divide by the same term, but I have got no telescoping sum for evaluation. Maybe I should use others technics.
Now my question is what is the closed form of the sum $$sum_k=1^nfrac1sqrt2k+sqrt4k^2-1 ?$$
sequences-and-series summation
add a comment |Â
up vote
3
down vote
favorite
The series $sumlimits_k=1^inftyfrac1sqrt2k+sqrt4k^2-1$ is divergent. I am interested in its partial sums to do some computations based on them.
I tried to multiply $sqrt2k+sqrt4k^2-1$ by $sqrt2k-sqrt4k^2-1$ and to divide by the same term, but I have got no telescoping sum for evaluation. Maybe I should use others technics.
Now my question is what is the closed form of the sum $$sum_k=1^nfrac1sqrt2k+sqrt4k^2-1 ?$$
sequences-and-series summation
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
The series $sumlimits_k=1^inftyfrac1sqrt2k+sqrt4k^2-1$ is divergent. I am interested in its partial sums to do some computations based on them.
I tried to multiply $sqrt2k+sqrt4k^2-1$ by $sqrt2k-sqrt4k^2-1$ and to divide by the same term, but I have got no telescoping sum for evaluation. Maybe I should use others technics.
Now my question is what is the closed form of the sum $$sum_k=1^nfrac1sqrt2k+sqrt4k^2-1 ?$$
sequences-and-series summation
The series $sumlimits_k=1^inftyfrac1sqrt2k+sqrt4k^2-1$ is divergent. I am interested in its partial sums to do some computations based on them.
I tried to multiply $sqrt2k+sqrt4k^2-1$ by $sqrt2k-sqrt4k^2-1$ and to divide by the same term, but I have got no telescoping sum for evaluation. Maybe I should use others technics.
Now my question is what is the closed form of the sum $$sum_k=1^nfrac1sqrt2k+sqrt4k^2-1 ?$$
sequences-and-series summation
edited Jul 22 at 20:50
Did
242k23208443
242k23208443
asked Jul 22 at 15:11
zeraoulia rafik
2,1071823
2,1071823
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
9
down vote
accepted
Using the identity
$$sqrta+sqrtb=sqrtfrac12 left(a+sqrta^2-bright)+sqrtfrac12 left(a-sqrta^2-bright)$$
where: $a = 2 k$ and $b=4 k^2-1$, along with evaluating a telescoping series, we find that
$$beginalign
colorredsum _k=1^n frac1sqrt2 k+sqrt4 k^2-1&=sum _k=1^n fracsqrt2sqrt-1+2 k+sqrt1+2 k\\
&=sum _k=1^n fracsqrt2
left(sqrt2 k+1-sqrt2 k-1right)left(sqrt-1+2 k+sqrt1+2 kright) left(sqrt2 k+1-sqrt2 k-1right)\\
&=fracsum _k=1^n
left(sqrt2 k+1-sqrt2 k-1right)sqrt2\\
&=frac-1+sqrt1+2 nsqrt2\\
&=colorred-frac1sqrt2+fracsqrt1+2 nsqrt2
endalign$$
Thanks so much for the slick answer
â zeraoulia rafik
Jul 22 at 17:09
@zeraouliarafik . You're welcome:)
â Mariusz Iwaniuk
Jul 22 at 17:20
1
(+1) Nicely done. But CAS is unnecessary. Simply multiply numerator and denominator by $sqrt(2k+1)-sqrt(2k-1)$ to yield a telescoping series.
â Mark Viola
Jul 22 at 18:18
@MarkViola. Thanks for HINT.
â Mariusz Iwaniuk
Jul 22 at 18:40
You're welcome. My pleasure.
â Mark Viola
Jul 23 at 21:43
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
9
down vote
accepted
Using the identity
$$sqrta+sqrtb=sqrtfrac12 left(a+sqrta^2-bright)+sqrtfrac12 left(a-sqrta^2-bright)$$
where: $a = 2 k$ and $b=4 k^2-1$, along with evaluating a telescoping series, we find that
$$beginalign
colorredsum _k=1^n frac1sqrt2 k+sqrt4 k^2-1&=sum _k=1^n fracsqrt2sqrt-1+2 k+sqrt1+2 k\\
&=sum _k=1^n fracsqrt2
left(sqrt2 k+1-sqrt2 k-1right)left(sqrt-1+2 k+sqrt1+2 kright) left(sqrt2 k+1-sqrt2 k-1right)\\
&=fracsum _k=1^n
left(sqrt2 k+1-sqrt2 k-1right)sqrt2\\
&=frac-1+sqrt1+2 nsqrt2\\
&=colorred-frac1sqrt2+fracsqrt1+2 nsqrt2
endalign$$
Thanks so much for the slick answer
â zeraoulia rafik
Jul 22 at 17:09
@zeraouliarafik . You're welcome:)
â Mariusz Iwaniuk
Jul 22 at 17:20
1
(+1) Nicely done. But CAS is unnecessary. Simply multiply numerator and denominator by $sqrt(2k+1)-sqrt(2k-1)$ to yield a telescoping series.
â Mark Viola
Jul 22 at 18:18
@MarkViola. Thanks for HINT.
â Mariusz Iwaniuk
Jul 22 at 18:40
You're welcome. My pleasure.
â Mark Viola
Jul 23 at 21:43
add a comment |Â
up vote
9
down vote
accepted
Using the identity
$$sqrta+sqrtb=sqrtfrac12 left(a+sqrta^2-bright)+sqrtfrac12 left(a-sqrta^2-bright)$$
where: $a = 2 k$ and $b=4 k^2-1$, along with evaluating a telescoping series, we find that
$$beginalign
colorredsum _k=1^n frac1sqrt2 k+sqrt4 k^2-1&=sum _k=1^n fracsqrt2sqrt-1+2 k+sqrt1+2 k\\
&=sum _k=1^n fracsqrt2
left(sqrt2 k+1-sqrt2 k-1right)left(sqrt-1+2 k+sqrt1+2 kright) left(sqrt2 k+1-sqrt2 k-1right)\\
&=fracsum _k=1^n
left(sqrt2 k+1-sqrt2 k-1right)sqrt2\\
&=frac-1+sqrt1+2 nsqrt2\\
&=colorred-frac1sqrt2+fracsqrt1+2 nsqrt2
endalign$$
Thanks so much for the slick answer
â zeraoulia rafik
Jul 22 at 17:09
@zeraouliarafik . You're welcome:)
â Mariusz Iwaniuk
Jul 22 at 17:20
1
(+1) Nicely done. But CAS is unnecessary. Simply multiply numerator and denominator by $sqrt(2k+1)-sqrt(2k-1)$ to yield a telescoping series.
â Mark Viola
Jul 22 at 18:18
@MarkViola. Thanks for HINT.
â Mariusz Iwaniuk
Jul 22 at 18:40
You're welcome. My pleasure.
â Mark Viola
Jul 23 at 21:43
add a comment |Â
up vote
9
down vote
accepted
up vote
9
down vote
accepted
Using the identity
$$sqrta+sqrtb=sqrtfrac12 left(a+sqrta^2-bright)+sqrtfrac12 left(a-sqrta^2-bright)$$
where: $a = 2 k$ and $b=4 k^2-1$, along with evaluating a telescoping series, we find that
$$beginalign
colorredsum _k=1^n frac1sqrt2 k+sqrt4 k^2-1&=sum _k=1^n fracsqrt2sqrt-1+2 k+sqrt1+2 k\\
&=sum _k=1^n fracsqrt2
left(sqrt2 k+1-sqrt2 k-1right)left(sqrt-1+2 k+sqrt1+2 kright) left(sqrt2 k+1-sqrt2 k-1right)\\
&=fracsum _k=1^n
left(sqrt2 k+1-sqrt2 k-1right)sqrt2\\
&=frac-1+sqrt1+2 nsqrt2\\
&=colorred-frac1sqrt2+fracsqrt1+2 nsqrt2
endalign$$
Using the identity
$$sqrta+sqrtb=sqrtfrac12 left(a+sqrta^2-bright)+sqrtfrac12 left(a-sqrta^2-bright)$$
where: $a = 2 k$ and $b=4 k^2-1$, along with evaluating a telescoping series, we find that
$$beginalign
colorredsum _k=1^n frac1sqrt2 k+sqrt4 k^2-1&=sum _k=1^n fracsqrt2sqrt-1+2 k+sqrt1+2 k\\
&=sum _k=1^n fracsqrt2
left(sqrt2 k+1-sqrt2 k-1right)left(sqrt-1+2 k+sqrt1+2 kright) left(sqrt2 k+1-sqrt2 k-1right)\\
&=fracsum _k=1^n
left(sqrt2 k+1-sqrt2 k-1right)sqrt2\\
&=frac-1+sqrt1+2 nsqrt2\\
&=colorred-frac1sqrt2+fracsqrt1+2 nsqrt2
endalign$$
edited Jul 23 at 21:44
Mark Viola
126k1172167
126k1172167
answered Jul 22 at 15:56
Mariusz Iwaniuk
1,6511615
1,6511615
Thanks so much for the slick answer
â zeraoulia rafik
Jul 22 at 17:09
@zeraouliarafik . You're welcome:)
â Mariusz Iwaniuk
Jul 22 at 17:20
1
(+1) Nicely done. But CAS is unnecessary. Simply multiply numerator and denominator by $sqrt(2k+1)-sqrt(2k-1)$ to yield a telescoping series.
â Mark Viola
Jul 22 at 18:18
@MarkViola. Thanks for HINT.
â Mariusz Iwaniuk
Jul 22 at 18:40
You're welcome. My pleasure.
â Mark Viola
Jul 23 at 21:43
add a comment |Â
Thanks so much for the slick answer
â zeraoulia rafik
Jul 22 at 17:09
@zeraouliarafik . You're welcome:)
â Mariusz Iwaniuk
Jul 22 at 17:20
1
(+1) Nicely done. But CAS is unnecessary. Simply multiply numerator and denominator by $sqrt(2k+1)-sqrt(2k-1)$ to yield a telescoping series.
â Mark Viola
Jul 22 at 18:18
@MarkViola. Thanks for HINT.
â Mariusz Iwaniuk
Jul 22 at 18:40
You're welcome. My pleasure.
â Mark Viola
Jul 23 at 21:43
Thanks so much for the slick answer
â zeraoulia rafik
Jul 22 at 17:09
Thanks so much for the slick answer
â zeraoulia rafik
Jul 22 at 17:09
@zeraouliarafik . You're welcome
:)
â Mariusz Iwaniuk
Jul 22 at 17:20
@zeraouliarafik . You're welcome
:)
â Mariusz Iwaniuk
Jul 22 at 17:20
1
1
(+1) Nicely done. But CAS is unnecessary. Simply multiply numerator and denominator by $sqrt(2k+1)-sqrt(2k-1)$ to yield a telescoping series.
â Mark Viola
Jul 22 at 18:18
(+1) Nicely done. But CAS is unnecessary. Simply multiply numerator and denominator by $sqrt(2k+1)-sqrt(2k-1)$ to yield a telescoping series.
â Mark Viola
Jul 22 at 18:18
@MarkViola. Thanks for HINT.
â Mariusz Iwaniuk
Jul 22 at 18:40
@MarkViola. Thanks for HINT.
â Mariusz Iwaniuk
Jul 22 at 18:40
You're welcome. My pleasure.
â Mark Viola
Jul 23 at 21:43
You're welcome. My pleasure.
â Mark Viola
Jul 23 at 21:43
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859489%2fpartial-sums-of-the-series-sum-limits-k-geq1-frac1-sqrt2k-sqrt4k2-1%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password