multi-dimensional integral of modified Vandermonde determinant
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
I'm looking for suggestions on how one might try to compute the following $(N-1)$-dimensional integral:
$$I_N = frac1(2pi)^N-1(N-1)! intcdotsint \
beginvmatrix
1 & 1 & cdots & 1 & 1 \
e^ialpha_1 & e^ialpha_2 & cdots & e^ialpha_N-1 & e^-i(alpha_1+dots+alpha_N-1) \
e^i2alpha_1 & e^i2alpha_2 & cdots & e^i2alpha_N-1 & e^-i2(alpha_1+dots+alpha_N-1) \
vdots & vdots & ddots & vdots & vdots \
e^i(N-1)alpha_1 & e^i(N-1)alpha_2 & cdots & e^i(N-1)alpha_N-1 & e^-i(N-1)(alpha_1+dots+alpha_N-1) \
endvmatrix^2
dalpha_1cdots dalpha_N-1$$
over the region given by the following conditions:
$$alpha_N-1inleft(-pi, -pi+frac2piNright) text and alpha_1,dots,alpha_N-2,-(alpha_1+dots+alpha_N-1)inleft(-pi+frac2piN, piright)$$
More generally, the integration region could be described as: one of the variables $alpha_i$, $1leq ileq N-1$ must be inside the interval $left(-pi, -pi+frac2piNright)$, and the rest of the $alpha_i$, together with $-alpha_1-dots-alpha_N-1$ must be outside this interval $mod 2pi$. $alpha_N-1$ is just a particular choice and the value of $I_N$ doesn't change if $alpha_N-1$ is replaced by some other $alpha_i$; it also doesn't change if the interval
$left(-pi, -pi+frac2piNright)$ gets replaced with $left(pi-frac2piN, piright)$
Regarding the shape of the integration region, in the $N=3$ case it is a hexagon, in the $N=4$ case it's an octahedron, and in general, the region for $I_N$ is an $(N-1)$-dimensional polytope with $2N$ sides. The normalization factor in front of the integral is just to ensure that $0leq I_Nleq 1$
The integrand is the square of the absolute value of the determinant, and can also be expressed as
$$prod_1leq j<kleq N-1 |e^ialpha_j-e^ialpha_k|^2 prod_1leq jleq N-1 |e^ialpha_j-e^-i(alpha_1+dots+alpha_N-1)|^2$$
or equivalently
$$2^N(N-1) prod_1leq j<kleq N-1 sin^2fracalpha_j-alpha_k2 prod_1leq jleq N-1 sin^2fracalpha_j+alpha_1+dots+alpha_N-12 $$
Using Wolfram Mathematica, I have explicitly computed the values of $I_N$ when $N=2,3,4$
beginalign
I_2 & =1 \[8pt]
I_3 & =frac712+frac113pi^2 \[8pt]
I_4 & =frac512+frac1001360pi^2+frac4232675pi^3
endalign
and I've noticed that if $Ngeq 4, I_N$ can be split into two equal iterated integrals, for which only the first two variables $alpha_1$ and $alpha_2$ have non-constant integration limits:
$$ frac1(2pi)^N-1(N-1)! displaystyle int_-pi^-pi+frac2piN int_-pi+frac2piN^pi dots int_-pi+frac2piN^pi left( int_-frac2piN-alpha_3-ldots-alpha_N-1^pi int_-pi+frac2piN^pi-frac2piN-alpha_2-ldots-alpha_N-1 |dots|^2 dalpha_1 dalpha_2 right) dalpha_3 dots dalpha_N-2 dalpha_N-1 = $$
$$ = frac1(2pi)^N-1(N-1)! displaystyle int_-pi^-pi+frac2piN int_-pi+frac2piN^pi dots int_-pi+frac2piN^pi left( int_-pi+frac2piN^-frac2piN-alpha_3-ldots-alpha_N-1 int_-pi-alpha_2-ldots-alpha_N-1^pi |dots|^2 dalpha_1 dalpha_2 right) dalpha_3 dots dalpha_N-2 dalpha_N-1 = frac12I_N $$
but so far, I haven't been able to figure out a method for computing either of these two integrals for arbitrary $N$.
multivariable-calculus definite-integrals determinant multiple-integral random-matrices
add a comment |Â
up vote
3
down vote
favorite
I'm looking for suggestions on how one might try to compute the following $(N-1)$-dimensional integral:
$$I_N = frac1(2pi)^N-1(N-1)! intcdotsint \
beginvmatrix
1 & 1 & cdots & 1 & 1 \
e^ialpha_1 & e^ialpha_2 & cdots & e^ialpha_N-1 & e^-i(alpha_1+dots+alpha_N-1) \
e^i2alpha_1 & e^i2alpha_2 & cdots & e^i2alpha_N-1 & e^-i2(alpha_1+dots+alpha_N-1) \
vdots & vdots & ddots & vdots & vdots \
e^i(N-1)alpha_1 & e^i(N-1)alpha_2 & cdots & e^i(N-1)alpha_N-1 & e^-i(N-1)(alpha_1+dots+alpha_N-1) \
endvmatrix^2
dalpha_1cdots dalpha_N-1$$
over the region given by the following conditions:
$$alpha_N-1inleft(-pi, -pi+frac2piNright) text and alpha_1,dots,alpha_N-2,-(alpha_1+dots+alpha_N-1)inleft(-pi+frac2piN, piright)$$
More generally, the integration region could be described as: one of the variables $alpha_i$, $1leq ileq N-1$ must be inside the interval $left(-pi, -pi+frac2piNright)$, and the rest of the $alpha_i$, together with $-alpha_1-dots-alpha_N-1$ must be outside this interval $mod 2pi$. $alpha_N-1$ is just a particular choice and the value of $I_N$ doesn't change if $alpha_N-1$ is replaced by some other $alpha_i$; it also doesn't change if the interval
$left(-pi, -pi+frac2piNright)$ gets replaced with $left(pi-frac2piN, piright)$
Regarding the shape of the integration region, in the $N=3$ case it is a hexagon, in the $N=4$ case it's an octahedron, and in general, the region for $I_N$ is an $(N-1)$-dimensional polytope with $2N$ sides. The normalization factor in front of the integral is just to ensure that $0leq I_Nleq 1$
The integrand is the square of the absolute value of the determinant, and can also be expressed as
$$prod_1leq j<kleq N-1 |e^ialpha_j-e^ialpha_k|^2 prod_1leq jleq N-1 |e^ialpha_j-e^-i(alpha_1+dots+alpha_N-1)|^2$$
or equivalently
$$2^N(N-1) prod_1leq j<kleq N-1 sin^2fracalpha_j-alpha_k2 prod_1leq jleq N-1 sin^2fracalpha_j+alpha_1+dots+alpha_N-12 $$
Using Wolfram Mathematica, I have explicitly computed the values of $I_N$ when $N=2,3,4$
beginalign
I_2 & =1 \[8pt]
I_3 & =frac712+frac113pi^2 \[8pt]
I_4 & =frac512+frac1001360pi^2+frac4232675pi^3
endalign
and I've noticed that if $Ngeq 4, I_N$ can be split into two equal iterated integrals, for which only the first two variables $alpha_1$ and $alpha_2$ have non-constant integration limits:
$$ frac1(2pi)^N-1(N-1)! displaystyle int_-pi^-pi+frac2piN int_-pi+frac2piN^pi dots int_-pi+frac2piN^pi left( int_-frac2piN-alpha_3-ldots-alpha_N-1^pi int_-pi+frac2piN^pi-frac2piN-alpha_2-ldots-alpha_N-1 |dots|^2 dalpha_1 dalpha_2 right) dalpha_3 dots dalpha_N-2 dalpha_N-1 = $$
$$ = frac1(2pi)^N-1(N-1)! displaystyle int_-pi^-pi+frac2piN int_-pi+frac2piN^pi dots int_-pi+frac2piN^pi left( int_-pi+frac2piN^-frac2piN-alpha_3-ldots-alpha_N-1 int_-pi-alpha_2-ldots-alpha_N-1^pi |dots|^2 dalpha_1 dalpha_2 right) dalpha_3 dots dalpha_N-2 dalpha_N-1 = frac12I_N $$
but so far, I haven't been able to figure out a method for computing either of these two integrals for arbitrary $N$.
multivariable-calculus definite-integrals determinant multiple-integral random-matrices
Are you sure your integrals $I_2,I_3,I_4$ are correct? I get a different result. For example, for $N=2$, the determinant is $e^-ialpha_1-e^+ialpha_1$, and therefore $I_2=frac14piint_-pi^0 4sin^2(alpha_1)mathrm dalpha_1= 1/2neq1$.
â AccidentalFourierTransform
Jul 22 at 19:12
1
Sorry, I made a typo in the formula for $I_N$: it was supposed to be $(N-1)!$ instead of $N!$. Now, the values for $I_2, I_3, I_4$ are correct.
â Amadocta
Jul 22 at 20:11
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
I'm looking for suggestions on how one might try to compute the following $(N-1)$-dimensional integral:
$$I_N = frac1(2pi)^N-1(N-1)! intcdotsint \
beginvmatrix
1 & 1 & cdots & 1 & 1 \
e^ialpha_1 & e^ialpha_2 & cdots & e^ialpha_N-1 & e^-i(alpha_1+dots+alpha_N-1) \
e^i2alpha_1 & e^i2alpha_2 & cdots & e^i2alpha_N-1 & e^-i2(alpha_1+dots+alpha_N-1) \
vdots & vdots & ddots & vdots & vdots \
e^i(N-1)alpha_1 & e^i(N-1)alpha_2 & cdots & e^i(N-1)alpha_N-1 & e^-i(N-1)(alpha_1+dots+alpha_N-1) \
endvmatrix^2
dalpha_1cdots dalpha_N-1$$
over the region given by the following conditions:
$$alpha_N-1inleft(-pi, -pi+frac2piNright) text and alpha_1,dots,alpha_N-2,-(alpha_1+dots+alpha_N-1)inleft(-pi+frac2piN, piright)$$
More generally, the integration region could be described as: one of the variables $alpha_i$, $1leq ileq N-1$ must be inside the interval $left(-pi, -pi+frac2piNright)$, and the rest of the $alpha_i$, together with $-alpha_1-dots-alpha_N-1$ must be outside this interval $mod 2pi$. $alpha_N-1$ is just a particular choice and the value of $I_N$ doesn't change if $alpha_N-1$ is replaced by some other $alpha_i$; it also doesn't change if the interval
$left(-pi, -pi+frac2piNright)$ gets replaced with $left(pi-frac2piN, piright)$
Regarding the shape of the integration region, in the $N=3$ case it is a hexagon, in the $N=4$ case it's an octahedron, and in general, the region for $I_N$ is an $(N-1)$-dimensional polytope with $2N$ sides. The normalization factor in front of the integral is just to ensure that $0leq I_Nleq 1$
The integrand is the square of the absolute value of the determinant, and can also be expressed as
$$prod_1leq j<kleq N-1 |e^ialpha_j-e^ialpha_k|^2 prod_1leq jleq N-1 |e^ialpha_j-e^-i(alpha_1+dots+alpha_N-1)|^2$$
or equivalently
$$2^N(N-1) prod_1leq j<kleq N-1 sin^2fracalpha_j-alpha_k2 prod_1leq jleq N-1 sin^2fracalpha_j+alpha_1+dots+alpha_N-12 $$
Using Wolfram Mathematica, I have explicitly computed the values of $I_N$ when $N=2,3,4$
beginalign
I_2 & =1 \[8pt]
I_3 & =frac712+frac113pi^2 \[8pt]
I_4 & =frac512+frac1001360pi^2+frac4232675pi^3
endalign
and I've noticed that if $Ngeq 4, I_N$ can be split into two equal iterated integrals, for which only the first two variables $alpha_1$ and $alpha_2$ have non-constant integration limits:
$$ frac1(2pi)^N-1(N-1)! displaystyle int_-pi^-pi+frac2piN int_-pi+frac2piN^pi dots int_-pi+frac2piN^pi left( int_-frac2piN-alpha_3-ldots-alpha_N-1^pi int_-pi+frac2piN^pi-frac2piN-alpha_2-ldots-alpha_N-1 |dots|^2 dalpha_1 dalpha_2 right) dalpha_3 dots dalpha_N-2 dalpha_N-1 = $$
$$ = frac1(2pi)^N-1(N-1)! displaystyle int_-pi^-pi+frac2piN int_-pi+frac2piN^pi dots int_-pi+frac2piN^pi left( int_-pi+frac2piN^-frac2piN-alpha_3-ldots-alpha_N-1 int_-pi-alpha_2-ldots-alpha_N-1^pi |dots|^2 dalpha_1 dalpha_2 right) dalpha_3 dots dalpha_N-2 dalpha_N-1 = frac12I_N $$
but so far, I haven't been able to figure out a method for computing either of these two integrals for arbitrary $N$.
multivariable-calculus definite-integrals determinant multiple-integral random-matrices
I'm looking for suggestions on how one might try to compute the following $(N-1)$-dimensional integral:
$$I_N = frac1(2pi)^N-1(N-1)! intcdotsint \
beginvmatrix
1 & 1 & cdots & 1 & 1 \
e^ialpha_1 & e^ialpha_2 & cdots & e^ialpha_N-1 & e^-i(alpha_1+dots+alpha_N-1) \
e^i2alpha_1 & e^i2alpha_2 & cdots & e^i2alpha_N-1 & e^-i2(alpha_1+dots+alpha_N-1) \
vdots & vdots & ddots & vdots & vdots \
e^i(N-1)alpha_1 & e^i(N-1)alpha_2 & cdots & e^i(N-1)alpha_N-1 & e^-i(N-1)(alpha_1+dots+alpha_N-1) \
endvmatrix^2
dalpha_1cdots dalpha_N-1$$
over the region given by the following conditions:
$$alpha_N-1inleft(-pi, -pi+frac2piNright) text and alpha_1,dots,alpha_N-2,-(alpha_1+dots+alpha_N-1)inleft(-pi+frac2piN, piright)$$
More generally, the integration region could be described as: one of the variables $alpha_i$, $1leq ileq N-1$ must be inside the interval $left(-pi, -pi+frac2piNright)$, and the rest of the $alpha_i$, together with $-alpha_1-dots-alpha_N-1$ must be outside this interval $mod 2pi$. $alpha_N-1$ is just a particular choice and the value of $I_N$ doesn't change if $alpha_N-1$ is replaced by some other $alpha_i$; it also doesn't change if the interval
$left(-pi, -pi+frac2piNright)$ gets replaced with $left(pi-frac2piN, piright)$
Regarding the shape of the integration region, in the $N=3$ case it is a hexagon, in the $N=4$ case it's an octahedron, and in general, the region for $I_N$ is an $(N-1)$-dimensional polytope with $2N$ sides. The normalization factor in front of the integral is just to ensure that $0leq I_Nleq 1$
The integrand is the square of the absolute value of the determinant, and can also be expressed as
$$prod_1leq j<kleq N-1 |e^ialpha_j-e^ialpha_k|^2 prod_1leq jleq N-1 |e^ialpha_j-e^-i(alpha_1+dots+alpha_N-1)|^2$$
or equivalently
$$2^N(N-1) prod_1leq j<kleq N-1 sin^2fracalpha_j-alpha_k2 prod_1leq jleq N-1 sin^2fracalpha_j+alpha_1+dots+alpha_N-12 $$
Using Wolfram Mathematica, I have explicitly computed the values of $I_N$ when $N=2,3,4$
beginalign
I_2 & =1 \[8pt]
I_3 & =frac712+frac113pi^2 \[8pt]
I_4 & =frac512+frac1001360pi^2+frac4232675pi^3
endalign
and I've noticed that if $Ngeq 4, I_N$ can be split into two equal iterated integrals, for which only the first two variables $alpha_1$ and $alpha_2$ have non-constant integration limits:
$$ frac1(2pi)^N-1(N-1)! displaystyle int_-pi^-pi+frac2piN int_-pi+frac2piN^pi dots int_-pi+frac2piN^pi left( int_-frac2piN-alpha_3-ldots-alpha_N-1^pi int_-pi+frac2piN^pi-frac2piN-alpha_2-ldots-alpha_N-1 |dots|^2 dalpha_1 dalpha_2 right) dalpha_3 dots dalpha_N-2 dalpha_N-1 = $$
$$ = frac1(2pi)^N-1(N-1)! displaystyle int_-pi^-pi+frac2piN int_-pi+frac2piN^pi dots int_-pi+frac2piN^pi left( int_-pi+frac2piN^-frac2piN-alpha_3-ldots-alpha_N-1 int_-pi-alpha_2-ldots-alpha_N-1^pi |dots|^2 dalpha_1 dalpha_2 right) dalpha_3 dots dalpha_N-2 dalpha_N-1 = frac12I_N $$
but so far, I haven't been able to figure out a method for computing either of these two integrals for arbitrary $N$.
multivariable-calculus definite-integrals determinant multiple-integral random-matrices
edited Aug 5 at 11:16
asked Jul 22 at 14:48
Amadocta
163
163
Are you sure your integrals $I_2,I_3,I_4$ are correct? I get a different result. For example, for $N=2$, the determinant is $e^-ialpha_1-e^+ialpha_1$, and therefore $I_2=frac14piint_-pi^0 4sin^2(alpha_1)mathrm dalpha_1= 1/2neq1$.
â AccidentalFourierTransform
Jul 22 at 19:12
1
Sorry, I made a typo in the formula for $I_N$: it was supposed to be $(N-1)!$ instead of $N!$. Now, the values for $I_2, I_3, I_4$ are correct.
â Amadocta
Jul 22 at 20:11
add a comment |Â
Are you sure your integrals $I_2,I_3,I_4$ are correct? I get a different result. For example, for $N=2$, the determinant is $e^-ialpha_1-e^+ialpha_1$, and therefore $I_2=frac14piint_-pi^0 4sin^2(alpha_1)mathrm dalpha_1= 1/2neq1$.
â AccidentalFourierTransform
Jul 22 at 19:12
1
Sorry, I made a typo in the formula for $I_N$: it was supposed to be $(N-1)!$ instead of $N!$. Now, the values for $I_2, I_3, I_4$ are correct.
â Amadocta
Jul 22 at 20:11
Are you sure your integrals $I_2,I_3,I_4$ are correct? I get a different result. For example, for $N=2$, the determinant is $e^-ialpha_1-e^+ialpha_1$, and therefore $I_2=frac14piint_-pi^0 4sin^2(alpha_1)mathrm dalpha_1= 1/2neq1$.
â AccidentalFourierTransform
Jul 22 at 19:12
Are you sure your integrals $I_2,I_3,I_4$ are correct? I get a different result. For example, for $N=2$, the determinant is $e^-ialpha_1-e^+ialpha_1$, and therefore $I_2=frac14piint_-pi^0 4sin^2(alpha_1)mathrm dalpha_1= 1/2neq1$.
â AccidentalFourierTransform
Jul 22 at 19:12
1
1
Sorry, I made a typo in the formula for $I_N$: it was supposed to be $(N-1)!$ instead of $N!$. Now, the values for $I_2, I_3, I_4$ are correct.
â Amadocta
Jul 22 at 20:11
Sorry, I made a typo in the formula for $I_N$: it was supposed to be $(N-1)!$ instead of $N!$. Now, the values for $I_2, I_3, I_4$ are correct.
â Amadocta
Jul 22 at 20:11
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859471%2fmulti-dimensional-integral-of-modified-vandermonde-determinant%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Are you sure your integrals $I_2,I_3,I_4$ are correct? I get a different result. For example, for $N=2$, the determinant is $e^-ialpha_1-e^+ialpha_1$, and therefore $I_2=frac14piint_-pi^0 4sin^2(alpha_1)mathrm dalpha_1= 1/2neq1$.
â AccidentalFourierTransform
Jul 22 at 19:12
1
Sorry, I made a typo in the formula for $I_N$: it was supposed to be $(N-1)!$ instead of $N!$. Now, the values for $I_2, I_3, I_4$ are correct.
â Amadocta
Jul 22 at 20:11