showing that two subspaces of $mathbbR^4$ are equal

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
-3
down vote

favorite












I have two subspaces $U,V$ of $mathbbR^4$ where $$U=textspan(u_1,u_2,u_3)\ V=textspan(v_1,v_2)$$ for some vectors $u_1,u_2,u_3, v_1,v_2$. $U$ and $V$ are subspaces of $mathbb R^4$. How can I show that $U=V$?







share|cite|improve this question





















  • To show $Usubseteq V$, prove each $u_iin V$ etc.
    – Lord Shark the Unknown
    Jul 22 at 16:47










  • Show that $dim(U)=dim(V)=dim(Ucup V)$.
    – Michael Hoppe
    Jul 22 at 19:34














up vote
-3
down vote

favorite












I have two subspaces $U,V$ of $mathbbR^4$ where $$U=textspan(u_1,u_2,u_3)\ V=textspan(v_1,v_2)$$ for some vectors $u_1,u_2,u_3, v_1,v_2$. $U$ and $V$ are subspaces of $mathbb R^4$. How can I show that $U=V$?







share|cite|improve this question





















  • To show $Usubseteq V$, prove each $u_iin V$ etc.
    – Lord Shark the Unknown
    Jul 22 at 16:47










  • Show that $dim(U)=dim(V)=dim(Ucup V)$.
    – Michael Hoppe
    Jul 22 at 19:34












up vote
-3
down vote

favorite









up vote
-3
down vote

favorite











I have two subspaces $U,V$ of $mathbbR^4$ where $$U=textspan(u_1,u_2,u_3)\ V=textspan(v_1,v_2)$$ for some vectors $u_1,u_2,u_3, v_1,v_2$. $U$ and $V$ are subspaces of $mathbb R^4$. How can I show that $U=V$?







share|cite|improve this question













I have two subspaces $U,V$ of $mathbbR^4$ where $$U=textspan(u_1,u_2,u_3)\ V=textspan(v_1,v_2)$$ for some vectors $u_1,u_2,u_3, v_1,v_2$. $U$ and $V$ are subspaces of $mathbb R^4$. How can I show that $U=V$?









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 22 at 17:06









amWhy

189k25219431




189k25219431









asked Jul 22 at 16:45









Madhav Madhukar

1




1











  • To show $Usubseteq V$, prove each $u_iin V$ etc.
    – Lord Shark the Unknown
    Jul 22 at 16:47










  • Show that $dim(U)=dim(V)=dim(Ucup V)$.
    – Michael Hoppe
    Jul 22 at 19:34
















  • To show $Usubseteq V$, prove each $u_iin V$ etc.
    – Lord Shark the Unknown
    Jul 22 at 16:47










  • Show that $dim(U)=dim(V)=dim(Ucup V)$.
    – Michael Hoppe
    Jul 22 at 19:34















To show $Usubseteq V$, prove each $u_iin V$ etc.
– Lord Shark the Unknown
Jul 22 at 16:47




To show $Usubseteq V$, prove each $u_iin V$ etc.
– Lord Shark the Unknown
Jul 22 at 16:47












Show that $dim(U)=dim(V)=dim(Ucup V)$.
– Michael Hoppe
Jul 22 at 19:34




Show that $dim(U)=dim(V)=dim(Ucup V)$.
– Michael Hoppe
Jul 22 at 19:34















active

oldest

votes











Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);








 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859562%2fshowing-that-two-subspaces-of-mathbbr4-are-equal%23new-answer', 'question_page');

);

Post as a guest



































active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes










 

draft saved


draft discarded


























 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859562%2fshowing-that-two-subspaces-of-mathbbr4-are-equal%23new-answer', 'question_page');

);

Post as a guest













































































Comments

Popular posts from this blog

What is the equation of a 3D cone with generalised tilt?

Color the edges and diagonals of a regular polygon

Relationship between determinant of matrix and determinant of adjoint?